Self-powered infusion microfluidic pump for ex vivo drug delivery

  • Francesco Dal Dosso
  • Tadej Kokalj
  • Jaroslav Belotserkovsky
  • Dragana Spasic
  • Jeroen LammertynEmail author


In this work, we present a new iSIMPLE concept (infusion Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation), which requires no external power for activation nor liquid manipulation, it is easy to use while its fabrication method is extremely simple, inexpensive and suited for mass replication. The pump consists of a working liquid, which is - after finger activation - absorbed in a porous material (e.g. filter paper). The air expelled from the porous material increases the pressure in the downstream outlet channel and propels the outlet liquid (i.e. the sample) through the channel or ejects it. Here we investigated the influence of different filter papers on the iSIMPLE flow rates, achieving a wide range from 30 down to 0.07 μL/min. We also demonstrated the versatility of the iSIMPLE in terms of the liquid volume that can be manipulated (from 0.5 μL up to 150 μL) and the working pressure reaching 64 kPa, unprecedented high for a self-powered microfluidics pump. In addition, using a 34 G microneedle mounted on the iSIMPLE, we successfully injected liquids with different viscosities (from 0.93 up to 55.88 cP) both into an agarose matrix and a skin-like biological ex vivo substrate (i.e. chicken breast tissue). This work validated the compatibility of the iSIMPLE with drug delivery in a controlled way into a skin-like matrix, envisioning a whole new scenario for intradermal injections using self-contained skin patch. In addition, due to the extreme flexibility of the design and manufacturing, the iSIMPLE concept offers enormous opportunities for completely autonomous, portable and cost effective LOC devices.


Passive pump Disposable pump Infusion pump Self-powered microfluidics Lab-on-a-chip Drug delivery 



The research leading to these results has received funding from the Research Foundation - Flanders (FWO G086114 N), and the KU Leuven (OT 13/058, C3 project C32/17/007, C2 project C24/16/022).

Compliance with ethical standards

Competing interests

The authors declare no conflict of interest.

Supplementary material

10544_2018_289_MOESM1_ESM.pdf (534 kb)
ESM 1 (PDF 533 kb)

(MP4 1045 kb)


(MP4 1227 kb)


(MP4 1146 kb)


(MP4 1524 kb)


  1. J.B. Alarcon, A.W. Hartley, N.G. Harvey, J.A. Mikszta, Clin. Vaccine Immunol. 14, 375 (2007)CrossRefGoogle Scholar
  2. ALERE DETERMINE™ HIV-1/2 AG/AB COMBO (2016) Accessed 22 May 2018
  3. P. Anton, Viscosity measurement of whole. Blood (2016)Google Scholar
  4. A. Arora, I. Hakim, J. Baxter, R. Rathnasingham, R. Srinivasan, D.A. Fletcher, S. Mitragotri, Proc. Natl. Acad. Sci. U. S. A. 104, 4255 (2007)CrossRefGoogle Scholar
  5. S. Begolo, D.V. Zhukov, D.A. Selck, L. Li, R.F. Ismagilov, Lab Chip 14, 4616 (2014)CrossRefGoogle Scholar
  6. A.J. Chung, Y.S. Huh, D. Erickson, Biomed. Microdevices 11, 861 (2009)CrossRefGoogle Scholar
  7. Clearblue (2016) Clearblue pregnancy test. Accessed 22 May 2018
  8. Clearview (2016) ALERE™ MALARIA AG P.F. Accessed 22 May 2018
  9. G. Comina, A. Suska, D. Filippini, Biosens. Bioelectron. 77, 1153 (2015a)CrossRefGoogle Scholar
  10. G. Comina, A. Suska, D. Filippini, Angew. Chem. Int. Ed. Engl. 54, 8708 (2015b)CrossRefGoogle Scholar
  11. V.F. Curto, S. Coyle, R. Byrne, N. Angelov, D. Diamond, F. Benito-Lopez, Sensors Actuators B Chem. 175, 263 (2012a)CrossRefGoogle Scholar
  12. V.F. Curto, C. Fay, S. Coyle, R. Byrne, C.O.’. Toole, C. Barry, S. Hughes, N. Moyna, D. Diamond, F. Benito-Lopez, Sensors Actuators B Chem. 171, 1327 (2012b)CrossRefGoogle Scholar
  13. F. Dal Dosso, D. Decrop, E. Pérez-Ruiz, D. Daems, H. Agten, O. Al-Ghezi, O. Bollen, J. Breukers, F. De Rop, M. Katsafadou, J. Lepoudre, L. Lyu, P. Piron, R. Saesen, S. Sels, R. Soenen, E. Staljanssens, J. Taraporewalla, T. Kokalj, D. Spasic, J. Lammertyn, Anal. Chim. Acta (2017)Google Scholar
  14. L.A. Dick, Innovative drug delivery technology to meet evolving need of biologics and small. Molecules (2015)Google Scholar
  15. I.K. Dimov, L. Basabe-Desmonts, J.L. Garcia-Cordero, B.M. Ross, A.J. Ricco, L.P. Lee, Y. Park, A.J. Ricco, L.P. Lee, Lab Chip 11, 845 (2011)CrossRefGoogle Scholar
  16. E. Elizalde, R. Urteaga, C.L.A. Berli, Lab Chip 15, 2173 (2015)CrossRefGoogle Scholar
  17. J. Etter, C. Ng, A. Bohlke, S. Burton, and L. Dick, (n.d.)Google Scholar
  18. C.P. Foley, N. Nishimura, K.B. Neeves, C.B. Schaffer, W.L. Olbricht, Biomed. Microdevices 11, 915 (2009)CrossRefGoogle Scholar
  19. E.L. França, E.B. Ribeiro, E.F. Scherer, D.G. Cantarini, R.S. Pessôa, F.L. França, A.C. Honorio-França, Biomed Res. Int 840379 (2014)Google Scholar
  20. N. Fries, Capillary Transport Processes in Porous Materials: Experiment and Model, University of Bremen, (2010)Google Scholar
  21. E. Fu, T. Liang, P. Spicar-Mihalic, J. Houghtaling, S. Ramachandran, P. Yager, Anal. Chem. 84, 4574 (2012)CrossRefGoogle Scholar
  22. H. Gensler, R. Sheybani, P.-Y. Li, R. Lo Mann, E. Meng, Biomed. Microdevices 14, 483 (2012)CrossRefGoogle Scholar
  23. L. Gervais, E. Delamarche, Lab Chip 9, 3330 (2009)CrossRefGoogle Scholar
  24. D. G. Greene, P. Wuthrich, R. C. Portilla, M. Herring, R. P. Mahoney, S. Webb, J. Sorvillo, and D. S. Soane, in 13th Annu. PEGS Summit (Boston, 2017)Google Scholar
  25. W. Guo, J. Hansson, W. van der Wijngaart, Langmuir 32, 12650 (2016)CrossRefGoogle Scholar
  26. J. Gupta, S.S. Park, B. Bondy, E.I. Felner, M.R. Prausnitz, Biomaterials 32, 6823 (2011)CrossRefGoogle Scholar
  27. U.O. Häfeli, A. Mokhtari, D. Liepmann, B. Stoeber, Biomed. Microdevices 11, 943 (2009)CrossRefGoogle Scholar
  28. K. Hosokawa, K. Sato, N. Ichikawa, M. Maeda, Lab Chip 4, 181 (2004)CrossRefGoogle Scholar
  29. Inkscape (2016) Accessed 22 May 2018
  30. B.A. Inman, W. Etienne, R. Rubin, R.A. Owusu, T.R. Oliveira, D.B. Rodriques, P.F. Maccarini, P.R. Stauffer, A. Mashal, M.W. Dewhirst, Int. J. Hyperth. 29, 206 (2013)CrossRefGoogle Scholar
  31. N. Inoue, E. Takai, T. Arakawa, K. Shiraki, Mol. Pharm. 11, 1889 (2014)CrossRefGoogle Scholar
  32. W.W. Koelmans, G. Krishnamoorthy, A. Heskamp, J. Wissink, S. Misra, N. Tas, Mech. Eng. Res. 3, 51 (2013)CrossRefGoogle Scholar
  33. T. Kokalj, Y. Park, M. Vencelj, M. Jenko, L.P. Lee, Lab Chip 14, 4329 (2014)CrossRefGoogle Scholar
  34. E. Leonard, in Subcutaneous and Intramuscular Injections. Administration of Medication via intradermal (2017)Google Scholar
  35. Po-Ying Li, J. Shih, R. Lo, B. Adams, R. Agrawa, S. Saati, M. S. Humayun, Yu-Chong Tai, and E. Meng, in 2007 IEEE 20th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2007), pp. 15–18Google Scholar
  36. G. Li, Y. Luo, Q. Chen, L. Liao, J. Zhao, Biomicrofluidics 6, 14118 (2012)CrossRefGoogle Scholar
  37. D.Y. Liang, A.M. Tentori, I.K. Dimov, L.P. Lee, Biomicrofluidics 5, 24108 (2011)CrossRefGoogle Scholar
  38. R. Lo, P.-Y. Li, S. Saati, R.N. Agrawal, M.S. Humayun, E. Meng, Biomed. Microdevices 11, 959 (2009)CrossRefGoogle Scholar
  39. D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Chem. Soc. Rev. 39, 1153 (2010)CrossRefGoogle Scholar
  40. W. Martanto, J.S. Moore, O. Kashlan, R. Kamath, P.M. Wang, J.M. O’Neal, M.R. Prausnitz, Pharm. Res. 23, 104 (2006)CrossRefGoogle Scholar
  41. A.W. Martinez, S.T. Phillips, G.M. Whitesides, E. Carrilho, Anal. Chem. 82, 3 (2010)CrossRefGoogle Scholar
  42. N.-T. Nguyen, S.A.M. Shaegh, N. Kashaninejad, D.-T. Phan, Adv. Drug Deliv. Rev. 65, 1403 (2013)CrossRefGoogle Scholar
  43. A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, Sensors Actuators B Chem. 130, 917 (2008)CrossRefGoogle Scholar
  44. P. Novo, V. Chu, J.P. Conde, Biosens. Bioelectron. 57, 284 (2014)CrossRefGoogle Scholar
  45. M. Ochoa, C. Mousoulis, B. Ziaie, Adv. Drug Deliv. Rev. 64, 1603 (2012)CrossRefGoogle Scholar
  46. K.W. Oh, C.H. Ahn, J. Micromech. Microeng. 16, 13 (2006)CrossRefGoogle Scholar
  47. S.-J. Paik, S. Byun, J.-M. Lim, Y. Park, A. Lee, S. Chung, J. Chang, K. Chun, Sensors Actuators A 114, 276 (2004)CrossRefGoogle Scholar
  48. S.L. Perry, J.J.L. Higdon, P.J.A. Kenis, Lab Chip 10, 3112 (2010)CrossRefGoogle Scholar
  49. F.N. Pirmoradi, J.K. Jackson, H.M. Burt, M. Chiao, Lab Chip 11, 3072 (2011)CrossRefGoogle Scholar
  50. L. Qin, O. Vermesh, Q. Shi, J.R. Heath, Lab Chip 9 (2016, 2009)Google Scholar
  51. X. Qiu, J.A. Thompson, Z. Chen, C. Liu, D. Chen, S. Ramprasad, M.G. Mauk, S. Ongagna, C. Barber, W.R. Abrams, D. Malamud, P.L.A.M. Corstjens, H.H. Bau, Biomed. Microdevices 11, 1175 (2009)CrossRefGoogle Scholar
  52. Quidel (2016) QuickVue Influenza A+B. Accessed 22 May 2018
  53. R. Riahi, A. Tamayol, S.A.M. Shaegh, A.M. Ghaemmaghami, M.R. Dokmeci, A. Khademhosseini, Curr. Opin. Chem. Eng. 7, 101 (2015)CrossRefGoogle Scholar
  54. P. Ruef, J. Gehm, L. Gehm, C. Felbinger, J. Pöschl, N. Kuss, Gen. Physiol. Biophys. 33, 285 (2014)CrossRefGoogle Scholar
  55. R.K. Sivamani, B. Stoeber, G.C. Wu, H. Zhai, D. Liepmann, H. Maibach, Skin Res. Technol. 11, 152 (2005)CrossRefGoogle Scholar
  56. X. Wang, J.A. Hagen, I. Papautsky, Biomicrofluidics 7, 14107 (2013)CrossRefGoogle Scholar
  57. S.P. Woods, T.G. Constandinou, J. Micro-Bio Robot. 11, 19 (2016)CrossRefGoogle Scholar
  58. S. Yadav, S.J. Shire, D.S. Kalonia, J. Pharm. Sci. 99, 4812 (2010)CrossRefGoogle Scholar
  59. W. Yang, Y.G. Nam, B.-K. Lee, K. Han, T.H. Kwon, D.S. Kim, Jpn. J. Appl. Phys. 49, 06GM01 (2010)Google Scholar
  60. E.-C. Yeh, C.-C. Fu, L. Hu, R. Thakur, J. Feng, L.P. Lee, Sci. Adv. 3, e1501645 (2017)CrossRefGoogle Scholar
  61. P.K. Yuen, V.N. Goral, Lab Chip 10, 384 (2010)CrossRefGoogle Scholar
  62. D. Zhang, D.B. Das, C.D. Rielly, J. Pharm. Sci. 103, 613 (2014)CrossRefGoogle Scholar
  63. M. Zimmermann, H. Schmid, P. Hunziker, E. Delamarche, Lab Chip 7, 119 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Francesco Dal Dosso
    • 1
  • Tadej Kokalj
    • 1
  • Jaroslav Belotserkovsky
    • 1
  • Dragana Spasic
    • 1
  • Jeroen Lammertyn
    • 1
    Email author
  1. 1.Department of Biosystems, MeBioS-Biosensors GroupKU LeuvenLeuvenBelgium

Personalised recommendations