Skip to main content

An ultrasonically controlled switching system for power management in implantable devices

Abstract

In this paper, we present an ultrasonically controlled switching system that can save the battery power for implantable devices by turning the system on and off, on-demand. Ultrasonic control is employed to reduce the device size, increase the penetration depth, and reduce misalignment sensitivity associated with alternative techniques using permanent magnet and RF signal. As a proof-of-concept demonstration, a 665 kHz ultrasonic signal is used to activate a piezoelectric receiver which in turn switches a battery-powered RF system on-and-off. In-vitro tests show a reliable switching functionality at distances of up to 8 cm while consuming 43.5 nW (14.5 nA current consumption with 3 V power supply) when the system is in off-state, a factor of 10–100 times lower than the sleep-mode power consumption of typical RF SoC systems. The dimension of fabricated prototype is 6.3 × 16.7 × 2‍ mm3 allowing it to be easily incorporated into many existing implantable devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. J.E. Aldrich, Crit. Care Med. 35, S131 (2007)

    Article  Google Scholar 

  2. H.V. Allen, J.W. Knutti, Solid-state circuits Conf. Dig. Tech. Pap. 1981 IEEE Int. IEEE 24, 166 (1981)

    Google Scholar 

  3. A. Arbabian, T.C. Chang, M.L. Wang, J. Charthad, S. Baltsavias, M. Fallahpour, M.J. Weber, IEEE Microw. Mag. 17, 39 (2016)

    Article  Google Scholar 

  4. H. Azhari, Basics of Biomedical Ultrasound for Engineers (2010)

    Book  Google Scholar 

  5. H. Basaeri, D.B. Christensen, S. Roundy, Smart Mater. Struct. 25, 1 (2016)

    Article  Google Scholar 

  6. D.C. Bock, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, Electrochim. Acta 84, 155 (2012)

    Article  Google Scholar 

  7. Food and Drug Administration, Silver. Spring (2008)

  8. R. Holland, Acoust. Soc. Am. J. 43, 1 (1968)

    Article  Google Scholar 

  9. S. Iskandar, M. Reddy, M. Lavu, M. Atoui, M. Vodapally, R. Neerumalla, M. Molugu, R. Swarna, Q. Javed, K. Gangu, A. Gone, Circulation 134, A16029 (2016)

    Google Scholar 

  10. W. S. Lee, A. Kim, B. Ziaie, V. Raghunathan, and C. R. Powell, IEEE 2014 Biomed. Circuits Syst. Conf. BioCAS 2014 - Proc. 384 (2014)

  11. A. Leger and M. Deschamps, Ultrasonic Wave Propagation in Non Homogeneous Media NY, (2009)

  12. S.J.A. Majerus, P.C. Fletter, M.S. Damaser, S.L. Garverick, IEEE Trans. Biomed. Eng. 58, 763 (2011)

    Article  Google Scholar 

  13. T. Maleki, N. Cao, S.H. Song, C. Kao, S.-C.A. Ko, B. Ziaie, IEEE Trans. Biomed. Eng. 58, 3104 (2011)

    Article  Google Scholar 

  14. R. W. Martin, R. A. Sigelmann, and R. W. Martin, 475, (1984)

  15. J. R. Moser and A. A. Schneider, (1972)

  16. S. Ozeri, D. Shmilovitz, Ultrasonics 50, 556 (2010)

    Article  Google Scholar 

  17. P. Ritter, G.Z. Duray, S. Zhang, C. Narasimhan, K. Soejima, R. Omar, V. Laager, K. Stromberg, E. Williams, D. Reynolds, Europace 17, 807 (2015)

    Article  Google Scholar 

  18. A. Santić, S. Vamvakas, M.R. Neuman, IEEE Trans. Biomed. Eng. 29, 583 (1982)

    Article  Google Scholar 

  19. S.H. Song, A. Kim, B. Ziaie, IEEE Trans. Biomed. Eng. 62, 2717 (2015)

    Article  Google Scholar 

  20. J. Zhou, A. Kim, B. Ziaie, IEEE biomed. Circuits Syst. Conf. Eng. Heal. Minds able bodies. BioCAS 2015 - Proc., 1 (2015)

Download references

Acknowledgments

The authors would like to thank the staff of the Birck Nanotechnology Center at Purdue University and Sayemul Islam at Temple University for their support of fabrication and experiment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Babak Ziaie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Kim, A. & Ziaie, B. An ultrasonically controlled switching system for power management in implantable devices. Biomed Microdevices 20, 42 (2018). https://doi.org/10.1007/s10544-018-0288-2

Download citation

Keywords

  • Piezoelectric
  • Ultrasonic control
  • Power management
  • Wireless
  • Implantable device