Skip to main content

A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix

Abstract

Although our understanding of cellular behavior in response to extracellular biological and mechanical stimuli has greatly advanced using conventional 2D cell culture methods, these techniques lack physiological relevance. To a cell, the extracellular environment of a 2D plastic petri dish is artificially flat, extremely rigid, static and void of matrix protein. In contrast, we developed the microtissue vacuum-actuated stretcher (MVAS) to probe cellular behavior within a 3D multicellular environment composed of innate matrix protein, and in response to continuous uniaxial stretch. An array format, compatibility with live imaging and high-throughput fabrication techniques make the MVAS highly suited for biomedical research and pharmaceutical discovery. We validated our approach by characterizing the bulk microtissue strain, the microtissue strain field and single cell strain, and by assessing F-actin expression in response to chronic cyclic strain of 10%. The MVAS was shown to be capable of delivering reproducible dynamic bulk strain amplitudes up to 13%. The strain at the single cell level was found to be 10.4% less than the microtissue axial strain due to cellular rotation. Chronic cyclic strain produced a 35% increase in F-actin expression consistent with cytoskeletal reinforcement previously observed in 2D cell culture. The MVAS may further our understanding of the reciprocity shared between cells and their environment, which is critical to meaningful biomedical research and successful therapeutic approaches.

This is a preview of subscription content, access via your institution.

Fig. 1: MVAS device assembly.
Fig. 2: Representative microtissues at 4 d.
Fig. 3: Bulk Strain Characterization.
Fig. 4: Tissue strain field.
Fig. 5: Cellular strain.
Fig. 6: Cytoskeletal remodeling in response to chronic cyclic strain.

References

  • K. L. Billiar, in (Springer, Berlin, Heidelberg, 2010), pp. 201–245

  • S. Chagnon-Lessard, H. Jean-Ruel, M. Godin, A.E. Pelling, Integr. Biol. 66, 409 (2017)

    Google Scholar 

  • Y. Cui, F.M. Hameed, B. Yang, K. Lee, C.Q. Pan, S. Park, M. Sheetz, Nat. Commun. 6, 6333 (2015)

    Article  Google Scholar 

  • L. Deng, N.J. Fairbank, B. Fabry, P.G. Smith, G.N. Maksym, Am. J. Physiol. Cell Physiol. 287, C440 (2004)

    Article  Google Scholar 

  • D.E. Discher, P. Janmey, Y.-L. Wang, Science 310, 1139 (2005)

    Article  Google Scholar 

  • R. Edmondson, J.J. Broglie, A.F. Adcock, L. Yang, Assay Drug Dev. Technol. 12, 207 (2014)

    Article  Google Scholar 

  • J. Eyckmans, T. Boudou, X. Yu, C.S. Chen, Dev. Cell 21, 35 (2011)

    Article  Google Scholar 

  • L.G. Griffith, M.A. Swartz, Nat. Rev. Mol. Cell Biol. 7, 211 (2006)

    Article  Google Scholar 

  • K.M. Hakkinen, J.S. Harunaga, A.D. Doyle, K.M. Yamada, Tissue Eng. Part A 17, 713 (2011)

    Article  Google Scholar 

  • W.M. Han, S.-J. Heo, T.P. Driscoll, L.J. Smith, R.L. Mauck, D.M. Elliott, Biophys. J. 105, 807 (2013)

    Article  Google Scholar 

  • H. Hirata, H. Tatsumi, M. Sokabe, J. Cell Sci. 121, 2795 (2008)

    Article  Google Scholar 

  • D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber, Science 328, 80 (2010)

    Article  Google Scholar 

  • D.E. Ingber, FASEB J. 20, 811 (2006)

    Article  Google Scholar 

  • N.F. Jufri, A. Mohamedali, A. Avolio, M.S. Baker, Vasc. Cell 7, 8 (2015)

    Article  Google Scholar 

  • K. Kanda, T. Matsuda, T. Oka, ASAIO J. 39, M686 (n.d.)

  • B.-S. Kim, J. Nikolovski, J. Bonadio, D.J. Mooney, Nat. Biotechnol. 17, 979 (1999)

    Article  Google Scholar 

  • J. Lee, M.J. Cuddihy, N.A. Kotov, Tissue Eng. Part B Rev. 14, 61 (2008)

    Article  Google Scholar 

  • W.R. Legant, A. Pathak, M.T. Yang, V.S. Deshpande, R.M. McMeeking, C.S. Chen, Proc. Natl. Acad. Sci. U. S. A. 106, 10097 (2009)

    Article  Google Scholar 

  • A.S. Liu, H. Wang, C.R. Copeland, C.S. Chen, V.B. Shenoy, D.H. Reich, Sci. Rep. 6, 33919 (2016)

    Article  Google Scholar 

  • B.D. Lucas, T. Kanade, Proc. 7th Int. Jt. Conf. Artif. Intell. 2, 674 (1981)

    Google Scholar 

  • G.N. Maksym, L. Deng, N.J. Fairbank, C.A. Lall, S.C. Connolly, Can. J. Physiol. Pharmacol. 83, 913 (2005)

    Article  Google Scholar 

  • I. Martin, D. Wendt, M. Heberer, Trends Biotechnol. 22, 80 (2004)

    Article  Google Scholar 

  • F. Pampaloni, E.G. Reynaud, E.H.K. Stelzer, Nat. Rev. Mol. Cell Biol. 8, 839 (2007)

    Article  Google Scholar 

  • J.A. Pedersen, M.A. Swartz, Ann. Biomed. Eng. 33, 1469 (2005)

    Article  Google Scholar 

  • N. Pender, C.A. McCulloch, J. Cell Sci. 100 (1991)

  • B.D. Riehl, J.-H. Park, I.K. Kwon, J.Y. Lim, Tissue Eng. Part B Rev. 18, 288 (2012)

    Article  Google Scholar 

  • D. Seliktar, R.A. Black, R.P. Vito, R.M. Nerem, Ann. Biomed. Eng. 28, 351 (2000)

    Article  Google Scholar 

  • K.-G. Shyu, Clin. Sci. 116 (2009)

  • P.G. Smith, R. Garcia, L. Kogerman, Exp. Cell Res. 232, 127 (1997)

    Article  Google Scholar 

  • P.G. Smith, L. Deng, J.J. Fredberg, G.N. Maksym, Am. J. Physiol. Lung Cell Mol. Physiol. 285 (2003)

  • J.P. Stegemann, R.M. Nerem, Ann. Biomed. Eng. 31, 391 (2003)

    Article  Google Scholar 

  • A.A. Tomei, F. Boschetti, F. Gervaso, M.A. Swartz, Biotechnol. Bioeng. 103, 217 (2009)

    Article  Google Scholar 

  • D. Tremblay, S. Chagnon-Lessard, M. Mirzaei, A.E. Pelling, M. Godin, Biotechnol. Lett. 36, 657 (2014)

    Article  Google Scholar 

  • A.R. West, N. Zaman, D.J. Cole, M.J. Walker, W.R. Legant, T. Boudou, C.S. Chen, J.T. Favreau, G.R. Gaudette, E.A. Cowley, G.N. Maksym, Am. J. Physiol. Lung Cell Mol. Physiol. 304, L4 (2013)

    Article  Google Scholar 

  • B. Williams, J. Hypertens. 16, 1921 (1998)

    Article  Google Scholar 

  • F. Xu, R. Zhao, A.S. Liu, T. Metz, Y. Shi, P. Bose, D.H. Reich, Lab Chip 15, 2496 (2015)

    Article  Google Scholar 

  • T. Yeung, P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P.A. Janmey, Cell Motil. Cytoskeleton 60, 24 (2005)

    Article  Google Scholar 

  • M. Yoshigi, L.M. Hoffman, C.C. Jensen, H.J. Yost, M.C. Beckerle, J. Cell Biol. 171, 209 (2005)

    Article  Google Scholar 

  • R. Zhao, T. Boudou, W.G. Wang, C.S. Chen, D.H. Reich, Adv. Mater. 25, 1699 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

M.W. is supported by OGS (Ontario Graduate Scholarship). The authors acknowledge support from individual NSERC Discovery Grants (M.G. and A.E.P.). A.E.P also acknowledges generous support from the Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Contributions

M.W. performed the data acquisition and analysis and wrote the manuscript. All authors contributed to the study design and revised the manuscript.

Corresponding author

Correspondence to Andrew E. Pelling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Electronic supplementary material

ESM 1

(DOCX 6243 kb)

ESM 2

(AVI 18830 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walker, M., Godin, M. & Pelling, A.E. A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix. Biomed Microdevices 20, 43 (2018). https://doi.org/10.1007/s10544-018-0286-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0286-4

Keywords

  • Microtissue
  • Cell mechanics
  • 3D cell culture
  • Microfabrication