Advertisement

A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment

  • Xu-Cheng Guo
  • Wei-Wen Hu
  • Say Hwa Tan
  • Chia-Wen Tsao
Article
  • 273 Downloads

Abstract

This paper reports a simple method used to fabricate a stretchable conductive polypyrrole (PPy) rough pore-shape polydimethylsiloxane (p-PDMS) device. An abrasive paper is first used to imprint rough micro-structures on the SU-8 micromold. The p-PDMS microchannel is then fabricated using a standard soft-lithography process. An oxygen plasma treatment is then applied to form an irreversible sealing between the microchannel and a blank cover PDMS. The conductive layer is formed by injecting the PPy mixture into the microchannel which polymerizes in the rough pore-shape micro-structures; The PPy/p-PDMS hybrid device shows good electrical property and stretchability. The electrical properties of different geometrical designs of the PPy/p-PDMS microchannel under stretching were investigated, including straight, curved, and serpentine. Mouse embryonic fibroblasts (NIH/3 T3) were also cultured inside the PPy/p-PDMS device to demonstrate good biocompatibility and feasibility using the conductive and stretchable microchannel in cell culture microfluidics applications. Finally, cyclic stretching and bending tests were performed to evaluate the reliability of PPy/p-PDMS microchannel.

Keywords

Polypyrrole (PPy) Polydimethylsiloxane (PDMS) Microchannel Oxygen plasma treatment 

Notes

Acknowledgements

The authors thank the Ministry of Science and Technology, Taiwan, and National Central University–Cathay General Hospital joint research program, for financially supporting this project under Grant No. MOST 105-2221-E-008-061, MOST 104-2911-I-008-514, and 105 CGH-NCU-A2. S.H Tan gratefully acknowledges the support of the Australian Research Council DECRA Fellowship (DE170100600), Griffith University-Peking University Collaboration Grant and Griffith University-Simon Fraser University collaborative grant.

References

  1. A. Aziz, C. Geng, M. Fu, X. Yu, K. Qin, B. Liu, The role of microfluidics for organ on Chip simulations. Bioengineering 4, 39 (2017)CrossRefGoogle Scholar
  2. I. Bernardeschi, F. Greco, G. Ciofani, A. Marino, V. Mattoli, B. Mazzolai, L. Beccai, A soft, stretchable and conductive biointerface for cell mechanobiology. Biomed. Microdevices 17, 46 (2015)CrossRefGoogle Scholar
  3. S.N. Bhatia, D.E. Ingber, Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760 (2014)CrossRefGoogle Scholar
  4. M.T. Chen, L. Zhang, S.S. Duan, S.L. Jing, H. Jiang, C.Z. Li, Highly stretchable conductors integrated with a conductive carbon nanotube/Graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 24, 7548–7556 (2014)CrossRefGoogle Scholar
  5. M.M. Demir, M. Memesa, P. Castignolles, G. Wegner, PMMA/zinc oxide Nanocomposites prepared by in-situ bulk polymerization. Macromol. Rapid Commun. 27, 763–770 (2006)CrossRefGoogle Scholar
  6. S.S. Duan, K. Yang, Z.H. Wang, M.T. Chen, L. Zhang, H.B. Zhang, C.Z. Li, Fabrication of highly stretchable conductors based on 3D printed porous poly(dimethylsiloxane) and conductive carbon nanotubes/Graphene network. ACS Appl. Mater. Interfaces 8, 2187–2192 (2016)CrossRefGoogle Scholar
  7. C.F. Feng, Z.F. Yi, L.F. Dumee, C.J. Garvey, F.H. She, B. Lin, S. Lucas, J. Schutz, W.M. Gao, Z. Peng, L.X. Kong, Shrinkage induced stretchable micro-wrinkled reduced graphene oxide composite with recoverable conductivity. Carbon 93, 878–886 (2015)CrossRefGoogle Scholar
  8. J.L. Fritz, M.J. Owen, Hydrophobic recovery of plasma-treated polydimethylsiloxane. J. Adhes. 54, 33–45 (1995)CrossRefGoogle Scholar
  9. W. Guo, X. Zhang, X. Yu, S. Wang, J. Qiu, W. Tang, L. Li, H. Liu, Z.L. Wang, Self-powered electrical stimulation for enhancing neural differentiation of Mesenchymal stem cells on Graphene–poly(3,4-ethylenedioxythiophene) hybrid microfibers. ACS Nano 10, 5086–5095 (2016)CrossRefGoogle Scholar
  10. S. Halldorsson, E. Lucumi, R. Gómez-Sjöberg, R.M.T. Fleming, Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 63, 218–231 (2015)CrossRefGoogle Scholar
  11. W.W. Hu, Y.T. Hsu, Y.C. Cheng, C. Li, R.C. Ruaan, C.C. Chien, C.A. Chung, C.W. Tsao, Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science & Engineering C-Materials for Biological Applications 37, 28–36 (2014)CrossRefGoogle Scholar
  12. Y. Huang, Y. Li, J. Chen, H. Zhou, S. Tan, Electrical stimulation elicits neural stem cells activation: New perspectives in CNS repair. Front. Hum. Neurosci. 9, 586 (2015)Google Scholar
  13. T. Jung, S. Yang, Highly stable liquid metal-based pressure sensor integrated with a Microfluidic Channel. Sensors 15, 11823–11835 (2015)CrossRefGoogle Scholar
  14. E.M. Kearney, E. Farrell, P.J. Prendergast, V.A. Campbell, Tensile strain as a regulator of Mesenchymal stem cell Osteogenesis. Ann. Biomed. Eng. 38, 1767–1779 (2010)CrossRefGoogle Scholar
  15. Kenry, J.C. Yeo, C.T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsystems & Nanoengineering 2, 16043 (2016a)CrossRefGoogle Scholar
  16. Kenry, J.C. Yeo, J.H. Yu, M.L. Shang, K.P. Loh, C.T. Lim, Highly flexible Graphene oxide Nanosuspension liquid-based microfluidic tactile sensor. Small 12, 1593–1604 (2016b)CrossRefGoogle Scholar
  17. D. Kim, S.J. Heo, S.H. Kim, J. Shin, S. Park, J.W. Shin, Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. Biotechnol. Lett. 33, 2351–2359 (2011)CrossRefGoogle Scholar
  18. A. Larmagnac, S. Eggenberger, H. Janossy, J. Voros, Stretchable electronics based on Ag-PDMS composites. Sci. Rep. 4 (2014)Google Scholar
  19. J.B. Lee, D.Y. Khang, Electrical and mechanical characterization of stretchable multi-walled carbon nanotubes/polydimethylsiloxane elastomeric composite conductors. Compos. Sci. Technol. 72, 1257–1263 (2012)CrossRefGoogle Scholar
  20. J.H. Lee, I.-H. Oh, H.K. Lim, Stem cell therapy: A prospective treatment for Alzheimer's disease. Psychiatry Investigation 13, 583–589 (2016)CrossRefGoogle Scholar
  21. Y.R. Liu, C.T. Buckley, K.J. Mulhall, D.J. Kelly, Combining BMP-6, TGF-beta 3 and hydrostatic pressure stimulation enhances the functional development of cartilage tissues engineered using human infrapatellar fat pad derived stem cells. Biomaterials Science 1, 745–752 (2013)CrossRefGoogle Scholar
  22. Z. Ma, A. Teo, S. Tan, Y. Ai, N.-T. Nguyen, Self-aligned Interdigitated transducers for Acoustofluidics. Micromachines 7, 216 (2016)CrossRefGoogle Scholar
  23. S.E. Marsh, M. Blurton-Jones, Neural stern cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem. Int. 106, 94–100 (2017)CrossRefGoogle Scholar
  24. M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, D. Johnson, On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. J. Colloid Interface Sci. 137, 11–24 (1990)CrossRefGoogle Scholar
  25. M. Nikmanesh, Z.D. Shi, J.M. Tarbell, Heparan sulfate proteoglycan mediates shear stress-induced endothelial gene expression in mouse embryonic stem cell-derived endothelial cells. Biotechnol. Bioeng. 109, 583–594 (2012)CrossRefGoogle Scholar
  26. H. Ota, K. Chen, Y.J. Lin, D. Kiriya, H. Shiraki, Z.B. Yu, T.J. Ha, A. Javey, Highly deformable liquid-state heterojunction sensors. Nat. Commun. 5, 5032 (2014)CrossRefGoogle Scholar
  27. A. Pavesi, F. Piraino, G.B. Fiore, K.M. Farino, M. Moretti, M. Rasponi, How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab Chip 11, 1593–1595 (2011)CrossRefGoogle Scholar
  28. C. Racles, V.E. Musteata, A. Bele, M. Dascalu, C. Tugui, A.L. Matricala, Highly stretchable composites from PDMS and polyazomethine fine particles. RSC Adv. 5, 102599–102609 (2015)CrossRefGoogle Scholar
  29. J.A. Rogers, T. Someya, Y.G. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)CrossRefGoogle Scholar
  30. A.J. Steward, S.D. Thorpe, T. Vinardell, C.T. Buckley, D.R. Wagner, D.J. Kelly, Cell-matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure. Acta Biomater. 8, 2153–2159 (2012)CrossRefGoogle Scholar
  31. S.H. Tan, N.-T. Nguyen, Y.C. Chua, T.G. Kang, Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4, 032204 (2010)CrossRefGoogle Scholar
  32. S.H. Tan, F. Maes, B. Semin, J. Vrignon, J.C. Baret, The microfluidic jukebox. Sci. Rep. 4 (2014a)Google Scholar
  33. S.H. Tan, B. Semin, J.C. Baret, Microfluidic flow-focusing in ac electric fields. Lab Chip 14, 1099–1106 (2014b)CrossRefGoogle Scholar
  34. J. Tang, H. Guo, M.M. Zhao, J.T. Yang, D. Tsoukalas, B.Z. Zhang, J. Liu, C.Y. Xue, W.D. Zhang, Highly stretchable electrodes on wrinkled Polydimethylsiloxane substrates. Sci. Rep. 5 (2015)Google Scholar
  35. C.-W. Tsao, X.-C. Guo, W.-W. Hu, Highly stretchable conductive polypyrrole film on a three dimensional porous polydimethylsiloxane surface fabricated by a simple soft lithography process. RSC Adv. 6, 113344–113351 (2016)CrossRefGoogle Scholar
  36. W. Viratyaporn, R.L. Lehman, Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J. Therm. Anal. Calorim. 103, 267–273 (2011)CrossRefGoogle Scholar
  37. C.Y. Wu, W.H. Liao, Y.C. Tung, Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab Chip 11, 1740–1746 (2011)CrossRefGoogle Scholar
  38. H.-D. Xi, H. Zheng, W. Guo, A.M. Ganan-Calvo, Y. Ai, C.-W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, S.H. Tan, Active droplet sorting in microfluidics: A review. Lab Chip 17, 751–771 (2017)CrossRefGoogle Scholar
  39. Y.N. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998).  https://doi.org/10.1146/annurev.matsci.28.1.153
  40. J.C. Yeo, J.H. Yu, Z.M. Koh, Z.P. Wang, C.T. Lim, Wearable tactile sensor based on flexible microfluidics. Lab Chip 16, 3244–3250 (2016)CrossRefGoogle Scholar
  41. T. Zhang, Blum FD cationic surfactant blocks radical-inhibiting sites on silica. J. Colloid Interface Sci. 504, 111–114 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xu-Cheng Guo
    • 1
  • Wei-Wen Hu
    • 2
    • 3
  • Say Hwa Tan
    • 4
  • Chia-Wen Tsao
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringNational Central UniversityTaoyuanTaiwan
  2. 2.Centre for Biomedical Cell EngineeringNational Central UniversityTaoyuanTaiwan
  3. 3.Department of Chemical and Material EngineeringNational Central UniversityTaoyuanTaiwan
  4. 4.Queensland Micro- and Nanotechnology CentreGriffith UniversityNathanAustralia

Personalised recommendations