Biomedical Microdevices

, 20:19 | Cite as

Finite element analysis of hollow out-of-plane HfO2 microneedles for transdermal drug delivery applications

  • Yong-hua Zhang
  • Stephen A. Campbell
  • Sreejith Karthikeyan
Part of the following topical collections:
  1. Biomedical MicroNeedles


Transdermal drug delivery (TDD) based on microneedles is an excellent approach due to its advantages of both traditional transdermal patch and hypodermic syringes. In this paper, the fabrication method of hollow out-of-layer hafnium oxide (HfO2) microneedles mainly based on deep reactive ion etching of silicon and atomic layer deposition of HfO2 is described, and the finite element analysis of the microneedles based on ANSYS software is also presented. The fabrication process is simplified by using a single mask. The finite element analysis of a single microneedle shows that the flexibility of the microneedles can be easily adjusted for various applications. The finite element analysis of a 3 × 3 HfO2 microneedle array applied on the skin well explains the “bed of nail” effect, i.e., the skin is not liable to be pierced when the density of microneedles in array increases. The presented research work here provides useful information for design optimization of HfO2 microneedles used for TDD applications.


Transdermal drug delivery Microneedle HfO2 Atomic layer deposition Finite element analysis Bed of nail effect Flexible electronics Micro-electro-mechanical systems 



The authors would like to thank Yiping Zhu for helpful discussions, and Tony Whipple, Mark Fisher, Paul Kimani and other members of the Minnesota Nano Center at the University of Minnesota for their advice and help.


This work was supported by the State Scholarship Fund of China (Grant No.201306145016), and theopen research fund of Shanghai Key Laboratory of Multidimensional Information Processing, East ChinaNormal University (Grant No.40500-542500-15202/007/002).


  1. B. Al-Qallaf, D.B. Das, Optimizing microneedle arrays to increase skin permeability for transdermal drug. Ann. N. Y. Acad. Sci. 1161(1), 83–94 (2009)CrossRefGoogle Scholar
  2. S. Aoyagi, H. Izumi, Y. Isono, M. Fukuda, H. Ogawa, Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its applicaion to a microneedle. Sens. Actuators A 139(1–2), 293–302 (2007)CrossRefGoogle Scholar
  3. A. Azagury, L. Khoury, G. Enden, J. Kost, Ultrasound mediated transdermal drug delivery. Adv. Drug Deliv. Rev. 72, 127–143 (2014)CrossRefGoogle Scholar
  4. G. Cevc, Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 56(5), 675–711 (2004)CrossRefGoogle Scholar
  5. S. Chen, N. Li, J. Chen, Finite element analysis of microneedle insertion intio skin. Micro Nano Lett. 7(12), 1206–1209 (2012)CrossRefGoogle Scholar
  6. Y.Ö. Ciftci, A.H. Ergün, K. Çolakoǧlu, E. DeligÖz, First principles LDA+U and GCA+U study of HfO2: Dependecnce on the effective U paramter. Gazi Univ. J. Sci. 27(1), 627–636 (2014)Google Scholar
  7. A.-R. Denet, V. Preat, R. Vanbever, Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev. 56(5), 659–674 (2004)CrossRefGoogle Scholar
  8. P.M. Elias, K.P. Feingold, Coordinate regulation of epidermal differentiation and barrier homeostasis. Skin Pharmacol. Appl. Ski. Physiol. 14(Suppl. 1), 28–34 (2001)CrossRefGoogle Scholar
  9. G.J. Gerling, G.W. Thomas, The effect of fingertip microstructures on tactile edge perception. Proc. first joint Eurohaptics Conf. Symp. Haptic interfaces virtual environ. Teleoperator. Syst., 63–72 (2005)Google Scholar
  10. M.S. Gerstel, V.A. Place, Drug delivery device. US Patent, No. 3964482(A), (1976)Google Scholar
  11. P.G. Green, Iontophoretic delivery of peptide drugs. J. Control. Release 41(1–2), 33–48 (1996)CrossRefGoogle Scholar
  12. S. Henry, D. McAllister, M.G. Allen, M.R. Prausnitz, Microfabricated microneedles: A novel method to increase transdermal drug delivery. J. Pharm. Sci. 87(8), 922–925 (1998)CrossRefGoogle Scholar
  13. B. Ilic, S. Krylov, H. Craighead, Determination of density and Young’s modulus of atomic layer deposited thin films by resonant frequency measurements of optically excited nanocantilevers. Proceedings of the IEEE 22nd International Conference on Mico Electo Mechanical Systems (MEMS 2009), Sorrento, Italy, 25–29 January 2009, pp. 650–653Google Scholar
  14. S. Indermun, R. Luttge, Y.E. Choonara, P. Kumar, L.C. Du Toit, G. Modi, V. Pillay, Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release 185(1), 130–138 (2014)CrossRefGoogle Scholar
  15. Y.-C. Kim, J.-H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64(14), 1547–1568 (2012)CrossRefGoogle Scholar
  16. E. Larrañeta, R.E.M. Lutton, A.D. Woolfson, R.F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R 104, 1–32 (2016)CrossRefGoogle Scholar
  17. M.S. Lhernould, Optimizing hollow microneedles arrays aimed at transdermal drug delivery. Microsist. Technol. 19(1), 1–8 (2013)CrossRefGoogle Scholar
  18. I. Mansoor, Y. Liu, U.O. Häfeli, B. Stoeber, Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures. J. Micromech. Microeng. 23(8), 085011 (2013)CrossRefGoogle Scholar
  19. M. Matteucci, M. Fanetti, M. Casella, F. Gramatica, L. Gavioli, M. Tormen, G. Grenci, F.D. Angelis, E. Di Fabrizio, Poly vinyl alcohol re-usable masters for microneedle replication. Microelectron. Eng. 86(4–6), 752–756 (2009)CrossRefGoogle Scholar
  20. M.S. Nandagopal, R. Antony, S. Rangabhashiyam, N. Sreekumar, N. Selvaraju, Overviev of microneedle system: A third generaion transdermal drug delivery approach. Microsyst. Technol. 20(7), 1249–1272 (2014)CrossRefGoogle Scholar
  21. E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald, Bulk micromachined titanium microneedles. J. Microelectromech. Syst. 16(2), 289–295 (2007)CrossRefGoogle Scholar
  22. M.R. Prausnitz, Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 56(5), 581–587 (2004)CrossRefGoogle Scholar
  23. M.R. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotechnol. 26(11), 1261–1268 (2008)CrossRefGoogle Scholar
  24. R.J. Scheuplein, Mechanism of percutaneous. J. Invest. Dermatol 48, 79–88 (1967)CrossRefGoogle Scholar
  25. R.B. Walker, E.W. Smith, The role of percutaneous penetration enhancers. Adv. Drug Deliv. Rev. 18(3), 295–301 (1996)CrossRefGoogle Scholar
  26. N. Wilke, A. Mulcahy, S.-R. Ye, A. Morrissey, Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Micro Electron. J. 36(7), 650–656 (2005)Google Scholar
  27. A. C. Williams and B. W. Barry, Penetration enhancers. Adv. Drug Deliv. Rev., 64 (SUPPL.), pp. 128–137, 2012Google Scholar
  28. W. Yu, Y. Zhang, D. Liu, B. Xu, J. Zhou, Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater. Sci. Eng. C 80, 187–196 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic Science and EngineeringEast China Normal UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
  3. 3.Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisUSA
  4. 4.Department of Physics & NanotechnologySRM UniversityChennaiIndia

Personalised recommendations