Biomedical Microdevices

, 20:17 | Cite as

Simulative design in macroscale for prospective application to micro-catheters

Article
  • 75 Downloads

Abstract

In this paper, a motion-transforming element is applied to the development of a new catheter device. The motion-transforming element structure allows a reduction of linear movement and converts linear movement to rotational movement. The simulative design of micro-catheters is based on a proposed structure called the Operating Mini Station (OMS). OMS is operated by movement of a motion-transforming element. A new motion-transforming element is designed using multiple links that are connected by hinged joints based on an elastic design. The design of the links and the hinges are optimized for precise and reliable movement of the motion-transforming element. Because of the elastic design, it is possible to realize a catheter that allows various movements in small spaces like capillaries.

Keywords

Motion-transforming element Elastic design Simulative micro catheter Wire actuation High motion accuracy 

Supplementary material

10544_2018_259_MOESM1_ESM.mp4 (1.6 mb)
ESM 1 (MP4 1675 kb)
10544_2018_259_MOESM2_ESM.mp4 (320 kb)
ESM 2 (MP4 320 kb)

References

  1. A. Akbarzadeh, H. Kalani, Adv Robotics 26, 537 (2012)CrossRefGoogle Scholar
  2. Y. Chen, Z. You, Mech. Mach. Theory 42, 1484 (2007)CrossRefGoogle Scholar
  3. O. Cugat, J. Delamare, G. Reyne, Ieee T Magn 39, 3607 (2003)CrossRefGoogle Scholar
  4. P. Dasgupta, A. Henderson, Robotica 28, 235 (2010)CrossRefGoogle Scholar
  5. D. Eun, A. Bhandari, R. Boris, C. Rogers, M. Bhandari, M. Menon, BJU Int. 100, 1121 (2007)Google Scholar
  6. H. Fujita, V.T. Dau, K. Shimizu, R. Hatusuda, S. Sugiyama, E. Nagamori, Biomed. Microdevices 13(1), 123 (2011)CrossRefGoogle Scholar
  7. A.N. Grigorenko, N.W. Roberts, M.R. Dickinson, Y. Zhang, Nat. Photonics 2, 365 (2008)CrossRefGoogle Scholar
  8. C.W. Ha, D.Y. Yang, Int. J. Of intelligent mechatronics and Robotics 3, 48 (2013)CrossRefGoogle Scholar
  9. C.W. Ha, D.Y. Yang, Opt. Express 22, 20789 (2014)CrossRefGoogle Scholar
  10. M. Hagiwara, T. Kawahara, Y. Yamanishi, T. Masuda, L. Feng, F. Arai, Lab Chip 11, 2049 (2011)CrossRefGoogle Scholar
  11. L.A. Hirano, M.T. Escote, L.S. Martins, G.L. Mantovani, C.H. Scuracchio, Artif. Organs 35, 478 (2011)CrossRefGoogle Scholar
  12. Y.Y. Hu, B.J. Ma, Y.Y. Zhang, M. Wang, Biomed. Microdevices 16, 487 (2014)CrossRefGoogle Scholar
  13. M.V. Kunnavakkam, F.M. Houlihan, M. Schlax, J.A. Liddle, P. Kolodner, O. Nalamasu, J.A. Rogers, Appl. Phys. Lett. 82, 1152 (2003)CrossRefGoogle Scholar
  14. T.W. Lim, S.H. Park, D.Y. Yang, T.A. Pham, D.H. Lee, D.P. Kim, S.I. Chang, J.B. Yoon, Microelectron. Eng. 83, 2475 (2006)CrossRefGoogle Scholar
  15. S. Maruo, H. Inoue, Appl. Phys. Lett. 89, 144101 (2006)CrossRefGoogle Scholar
  16. S. Maruo, H. Inoue, Optically driven viscous micropump using a rotating microdisk, Appl. Phys. Lett. 91, 084101 (2007).  https://doi.org/10.1063/1.2768631 CrossRefGoogle Scholar
  17. H. Maruyama, IEEE MEMS 2009, 375 (2009)Google Scholar
  18. I.Y. Park, S.Y. Sung, J.H. Lee, Y.G. Lee, J. Micromech. Microeng. 17, N82 (2007)CrossRefGoogle Scholar
  19. O. Sardan, V. Eichhorn, D.H. Petersen, S. Fatikow, O. Sigmund, P. Boggild, Rapid prototyping of nanotubebased devices using topology-optimized microgrippers, Nanotechnology 19, 495503 (2008).  https://doi.org/10.1088/0957-4484/19/49/495503 CrossRefGoogle Scholar
  20. C.Y. Song, Y. Chen, Mech. Mach. Theory 46, 1097 (2011)CrossRefGoogle Scholar
  21. C.Y. Song, Y. Chen, P R Soc A 468, 871 (2012)CrossRefGoogle Scholar
  22. W.S.N. Trimmer, Sensors Actuators 19, 267 (1989)CrossRefGoogle Scholar
  23. M. Wautelet, Eur. J. Phys. 22, 601 (2001)CrossRefGoogle Scholar
  24. Y.J. Woo, E. Rodriguez, P. Atluri, W.R. Chitwood, Minimally Invasive, Robotic, and Off-Pump Mitral Valve Surgery. Semin. Thorac. Cardiovasc. Surg. 18(2), 139 (2006).  https://doi.org/10.1053/j.semtcvs.2006.07.004
  25. L.X. Yang, X.J. Hao, C.S. Wang, B.Z. Zhang, W.J. Wang, Microsyst. Technol. 20 (1933, 2014)Google Scholar
  26. W. Zhang, Z.P. Du, C.H. Chang, G.Y. Wang, J Colloid Interf Sci 337, 563 (2009)CrossRefGoogle Scholar
  27. Y. Zhang, G. Lin, Y.W. Zhu, R.S. Ruoff, D. W. Schaefer, Polymer 55, 5389 (2014).  https://doi.org/10.1016/j.polymer.2014.08.065
  28. X.H. Zhang, W.X. Que, J. Chen, J.X. Hu, T.X. Gao, W.G. Liu, Appl Phys B-Lasers O 113, 299 (2013)CrossRefGoogle Scholar
  29. K.T. Zhang, C. Qiu, J.S. Dai, Helical Kirigami-Enabled Centimeter-Scale Worm Robot With Shape-Memory-Alloy Linear Actuators, J Mech Robot 7, 021014 (2015).  https://doi.org/10.1115/1.4029494 CrossRefGoogle Scholar
  30. K. Zimmermann, V.A. Naletova, I. Zeidis, V.A. Turkov, E. Kolev, M.V. Lukashevich, G.V. Stepanov, J. Magn. Magn. Mater. 311, 450 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKorea Advanced Institute of Science & Technology (KAIST)DaejeonSouth Korea

Personalised recommendations