Biomedical Microdevices

, 19:101 | Cite as

A microfluidic in-line ELISA for measuring secreted protein under perfusion

  • Qiyue Luan
  • Stacey Cahoon
  • Agnes Wu
  • Shyam Sundhar Bale
  • Martin Yarmush
  • Abhinav BhushanEmail author


Recent progress in the development of microfluidic microphysiological systems such as ‘organs-on-chips’ and microfabricated cell culture is geared to simulate organ-level physiology. These tissue models leverage microengineering technologies that provide capabilities of presenting cultured cells with input signals in a more physiologically relevant context such as perfused flow. Proteins that are secreted from cells have important information about the health of the cells. Techniques to quantify cellular proteins include mass spectrometry to ELISA (enzyme-linked immunosorbent assay). Although our capability to perturb the cells in the microphysiological systems with varying inputs is well established, we lack the tools to monitor in-line the cellular responses. User intervention for sample collection and off-site is cumbersome, causes delays in obtaining results, and is especially expensive because of collection, storage, and offline processing of the samples, and in many case, technically impractical to carry out because of limitated sample volumes. To address these shortcomings, we report the development of an ELISA that is carried out in-line under perfusion within a microfluidic device. Using this assay, we measured the albumin secreted from perfused hepatocytes without and under stimulation by IL-6. Since the method is based on a sandwich ELISA, we envision broad application of this technology to not just organs-on-chips but also to characterizing the temporal release and measurement of soluble factors and response to drugs.


Microfluidics ELISA In-line measurement Cellular response 



This work was supported by NIH grant (R00 DK095984). We thank Dr. Sonali Karnik and Alice Chen for helping facilitate the experiments. The authors have no professional or financial conflicts, or interest to disclose.

Supplementary material

10544_2017_244_MOESM5_ESM.jpg (19 kb)
Supplementary Figure 1 Image of microfluidic device. (JPEG 19 kb)
10544_2017_244_MOESM6_ESM.jpg (12 kb)
Supplementary Figure 2 Albumin secreted from hepatocytes in a tissue culture plate without and with IL-6 stimulation. (JPEG 12 kb)


  1. S.N. Bhatia, D.E. Ingber, Nat. Biotechnol. 32, 760–772 (2014). CrossRefGoogle Scholar
  2. A. Bhushan, N. Senutovitch, S.S. Bale, W.J. McCarty, M. Hegde, R. Jindal, et al., Stem Cell Res Ther 4(Suppl 1), S16 (2013). CrossRefGoogle Scholar
  3. A.F. Carlin, P. Aristizabal, Q. Song, H. Wang, M.S. Paulson, L.M. Stamm, et al., Hepatology 62, 1047–1058 (2015). CrossRefGoogle Scholar
  4. Q. Chen, J. Wu, Y. Zhang, J.M. Lin, Anal. Chem. 84, 1695–1701 (2012). CrossRefGoogle Scholar
  5. S. Darmanis, C.J. Gallant, V.D. Marinescu, M. Niklasson, A. Segerman, G. Flamourakis, et al., Cell Rep. 14, 380–389 (2016). CrossRefGoogle Scholar
  6. C.E. Dugan, W.P. Cawthorn, O.A. MacDougald, R.T. Kennedy, Anal Bioanal Chem 406, 4851–4859 (2014). CrossRefGoogle Scholar
  7. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403–411 (2006). CrossRefGoogle Scholar
  8. A. Folch, M. Toner, Annu. Rev. Biomed. Eng. 2, 227–256 (2000). CrossRefGoogle Scholar
  9. A.S. Genshaft, S. Li, C.J. Gallant, S. Darmanis, S.M. Prakadan, C.G. Ziegler, et al., Genome Biol. 17, 188 (2016). CrossRefGoogle Scholar
  10. M. Hegde, R. Jindal, A. Bhushan, S.S. Bale, W.J. McCarty, I. Golberg, et al., Lab Chip 14, 2033–2039 (2014). CrossRefGoogle Scholar
  11. D. Huh, G.A. Hamilton, D.E. Ingber, Trends Cell Biol. 21, 745–754 (2011). CrossRefGoogle Scholar
  12. N.K. Inamdar, J.T. Borenstein, Curr. Opin. Biotechnol. 22, 681–689 (2011). CrossRefGoogle Scholar
  13. Y.H. Kang, F. Berthiaume, M.L. Yarmush, Tissue Eng. 8, 681–693 (2002)CrossRefGoogle Scholar
  14. G.D. Keppeke, M. Satoh, M.L. Ferraz, E.K. Chan, L.E. Andrade, Immunol. Res. 60, 38–49 (2014). CrossRefGoogle Scholar
  15. A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Proc. Natl. Acad. Sci. U. S. A. 103, 2480–2487 (2006). CrossRefGoogle Scholar
  16. S.F. Kingsmore, Nat. Rev. Drug Discov. 5, 310–320 (2006). CrossRefGoogle Scholar
  17. L. Lin, J.-M. Lin, in Cell Analysis on Microfluidics, ed. by J.-M. Lin. Microfluidics-Mass Spectrometry for Cell Analysis (Springer Singapore, Singapore, 2018a), pp. 291–311CrossRefGoogle Scholar
  18. X. Lin, J.-M. Lin, in Cell Analysis on Microfluidics, ed. by J.-M. Lin. Cell Metabolite Analysis on Microfluidic Platform (Springer Singapore, Singapore, 2018b), pp. 371–396CrossRefGoogle Scholar
  19. A.R. Lomasney, L. Yi, M.G. Roper, Anal. Chem. 85, 7919–7925 (2013). CrossRefGoogle Scholar
  20. U.B. Nielsen, B.H. Geierstanger, J. Immunol. Methods 290, 107–120 (2004). CrossRefGoogle Scholar
  21. S. Pan, R. Aebersold, R. Chen, J. Rush, D.R. Goodlett, M.W. McIntosh, et al., Proteome Res. 8, 787–797 (2009). CrossRefGoogle Scholar
  22. S.M. Prakadan, A.K. Shalek, D.A. Weitz, Nat. Rev. Genet. 18, 345–361 (2017). CrossRefGoogle Scholar
  23. E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181–189 (2014). CrossRefGoogle Scholar
  24. N.M. Schultz, R.T. Kennedy, Anal. Chem. 65, 3161–3165 (1993). CrossRefGoogle Scholar
  25. J.G. Shackman, K.R. Reid, C.E. Dugan, R.T. Kennedy, Anal. Bioanal. Chem. 402, 2797–2803 (2012). CrossRefGoogle Scholar
  26. L. Tao, C.A. Aspinwall, R.T. Kennedy, Electrophoresis 19, 403–408 (1998). CrossRefGoogle Scholar
  27. D.S. Wang, S.K. Fan, Sensors 16, 1175 (2016).
  28. X. Wang, L. Yi, M.G. Roper, Anal. Chem. 88, 3369–3375 (2016). CrossRefGoogle Scholar
  29. G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Annu. Rev. Biomed. Eng. 3, 335–373 (2001). CrossRefGoogle Scholar
  30. L. Yi, X. Wang, R. Dhumpa, A.M. Schrell, N. Mukhitov, M.G. Roper, Lab Chip 15, 823–832 (2015). CrossRefGoogle Scholar
  31. X. Zhang, A. Grimley, R. Bertram, & M.G. Roper, Anal. Chem. 82 6704–6711 (2010).
  32. X. Zhang, M.G. Roper, Anal. Chem. 81, 1162–1168 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoUSA
  2. 2.Center for Engineering in MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations