Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system

Abstract

Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) can contribute to elucidating the pathogenesis of heart and vascular diseases and developing their treatments. Their precise characteristics in fluid flow however remain unclear. Therefore, the aim of the present study is to characterise these features. We cultured three types of ECs in a microfluidic culture system: commercially available human iPS-ECs, human umbilical vein endothelial cells (HUVECs) and human umbilical artery endothelial cells (HUAECs). We then examined the mRNA expression levels of endothelial marker gene cluster of differentiation 31 (CD31), fit-related receptor tyrosine kinase (Flk-1), and the smooth muscle marker gene smooth muscle alpha-actin, and investigated changes in plasminogen activator inhibitor-1 (PAI-1) secretion and intracellular F-actin arrangement following heat stress. We also compared expressions of the arterial and venous marker genes ephrinB2 and EphB4, and the endothelial gap junction genes connexin (Cx) 37, 40, and 43 under fluidic shear stress to determine their arterial or venous characteristics. We found that iPS-ECs had similar endothelial marker gene expressions and exhibited similar increases in PAI-1 secretion under heat stress as HUVECs and HUAECs. In addition, F-actin arrangement in iPSC-ECs also responded to heat stress, as previously reported. However, they had different expression patterns of arterial and venous marker genes and Cx genes under different fluidic shear stress levels, showing that iPSC-ECs exhibit different characteristics from arterial and venous ECs. This microfluidic culture system equipped with variable shear stress control will provide an easy-to-use assay tool to examine characteristics of iPS-ECs generated by different protocols in various laboratories and contribute to basic and applied biomedical researches on iPS-ECs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. A.C. Brisset, B.E. Isakson, B.R. Kwak, Antioxid. Redox Signal. 11, 267 (2009)

    Article  Google Scholar 

  2. Q. Chen, H. Zhang, Y. Liu, S. Adams, H. Eilken, M. Stehling, M. Corada, E. Dejana, B. Zhou, R.H. Adams, Nat. Commun. 7, 12422 (2016)

    Article  Google Scholar 

  3. L.J. Chen, S. Ito, H. Kai, K. Nagamine, N. Nagai, M. Nishizawa, T. Abe, H. Kaji, Sci. Rep. 7, 3538 (2017)

    Article  Google Scholar 

  4. J.E. Deanfield, J.P. Halcox, T.J. Rabelink, Circulation 115(10), 1285 (2007)

    Google Scholar 

  5. A. Eichmann, C. Corbel, V. Nataf, P. Vaigot, C. Bréant, N.M. Le Douarin, Proc. Natl. Acad. Sci. U. S. A. 94, 5141 (1997)

    Article  Google Scholar 

  6. O. Hadadeh, E. Barruet, F. Peiretti, M. Verdier, D. Bernot, Y. Hadjal, C.E. Yazidi, A. Robaglia-Schlupp, A.M. De Paula, D. Nègre, M. Iacovino, M. Kyba, M.C. Alessi, B. Binétruy, PLoS One 7, e49065 (2012)

    Article  Google Scholar 

  7. S. Hamauchi, U. Shichinohe, H. Uchino, S. Yamaguchi, N. Nakayama, K. Kazumata, T. Osanai, T. Abumiya, K. Houkin, T. Era, PLoS One 11, e0163561 (2016)

    Article  Google Scholar 

  8. M.A. Hervé, G. Meduri, F.G. Petit, T.S. Domet, G. Lazennec, S. Mourah, M. Perrot-Applanat, J. Endocrinol. 188, 91 (2006)

    Article  Google Scholar 

  9. T. Ikuno, H. Masumoto, K. Yamamizu, M. Yoshioka, K. Minakata, T. Ikeda, R. Sakata, J.K. Yamashita, PLoS One 12, e0173271 (2017)

    Article  Google Scholar 

  10. T. Inai, M.R. Mancuso, D.M. McDonald, J. Kobayashi, K. Nakamura, Y. Shibata, Histochem. Cell Biol. 122, 477 (2004)

    Article  Google Scholar 

  11. T.L. Johnson, R.M. Nerem, Endothelium 14, 215 (2007)

    Article  Google Scholar 

  12. A. Kamiya, R. Bukhari, T. Togawa, Bull. Math. Biol. 46, 127 (1984)

    Article  Google Scholar 

  13. N.M. Kane, Q. Xiao, A.H. Baker, Z. Luo, Q. Xu, C. Emanueli, Pharmacol. Ther. 129, 29 (2011)

    Article  Google Scholar 

  14. S. Kashiwagi, Y. Izumi, T. Gohongi, Z.N. Demou, L. Xu, P.L. Huang, D.G. Buerk, L.L. Munn, R.K. Jain, D. Fukumura, J. Clin. Invest. 115, 1816 (2005)

    Article  Google Scholar 

  15. S. Kathiresan, D. Srivastava, Cell 148, 1242 (2012)

    Article  Google Scholar 

  16. M.E. Katt, Z.S. Xu, S. Gerecht, P.C. Searson, PLoS One 11, e0152105 (2016)

    Article  Google Scholar 

  17. N.J. Leeper, A.L. Hunter, J.P. Cooke, Circulation 122, 517 (2010)

    Article  Google Scholar 

  18. E.S. Lippmann, A. Al-Ahmad, S.M. Azarin, S.P. Palecek, E.V. Shusta, Sci Rep 4, 4160 (2014)

    Article  Google Scholar 

  19. H. Minami, K. Tashiro, A. Okada, N. Hirata, T. Yamaguchi, K. Takayama, H. Mizuguchi, K. Kawabata, PLoS One 10, e0128890 (2015)

    Article  Google Scholar 

  20. T.G. Papaioannou, C. Stefanadis, Hell. J. Cardiol. 46, 9 (2005)

    Google Scholar 

  21. A. Pfenniger, C. Wong, E. Sutter, S. Cuhlmann, S. Dunoyer-Geindre, F. Mach, A.J. Horrevoets, P.C. Evans, R. Krams, B.R. Kwak, J. Mol. Cell. Cardiol. 53, 299 (2012)

    Article  Google Scholar 

  22. A.J. Rufaihah, N.F. Huang, S. Jame, J.C. Lee, H.N. Nguyen, B. Byers, A. De, J. Okogbaa, M. Rollins, R. Reijo-Pera, S.S. Gambhir, J.P. Cooke, Arterioscler. Thromb. Vasc. Biol. 31, e72–e79 (2011)

    Article  Google Scholar 

  23. K. Sato, M. Nakajima, S. Tokuda, A. Ogawa, Anal. Sci. 32, 1217 (2016)

    Article  Google Scholar 

  24. F. Shalaby, J. Rosant, T.P. Yamaguchi, M. Gertsenstein, X.F. Wu, M.L. Breitman, A.C. Schuh, Nature 376, 62 (1995)

    Article  Google Scholar 

  25. H. Stockinger, S.J. Gadd, R. Eher, O. Majdic, W. Schreiber, W. Kasinrerk, B. Strass, E. Schnabl, W. Knapp, J. Immunol. 145, 3889 (1990)

    Google Scholar 

  26. H. Suzuki, R. Shibata, T. Kito, M. Ishii, P. Li, T. Yoshikai, N. Nishio, S. Ito, Y. Numaguchi, J.K. Yamashita, T. Murohara, K. Isobe, BMC Cell Biol. 11, 72 (2010). https://doi.org/10.1186/1471-2121-11-72

    Article  Google Scholar 

  27. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Cell 131(5), 861 (2007)

    Article  Google Scholar 

  28. K.S. Tan, K. Tamura, M.I. Lai, A. Veerakumarasivam, Y. Nakanishi, M. Ogawa, D. Sugiyama, Stem Cell Rev. 9, 586 (2013)

    Article  Google Scholar 

  29. H. Tazawa, K. Sato, A. Tsutiya, M. Tokeshi, R. Ohtani-Kaneko, Thromb. Res. 136, 328 (2015)

    Article  Google Scholar 

  30. H. Tazawa, S. Sunaoshi, M. Tokeshi, T. Kitamori, R. Ohtani-Kaneko, Anal. Sci. 32, 349 (2016)

    Article  Google Scholar 

  31. J.A. van Mourik, O.C. Leeksma, J.H. Reinders, P.G. de Groot, J. Zandbergen-Spaargaren, J. Biol. Chem. 260, 11300 (1985)

    Google Scholar 

  32. K.S. Volz, E. Miljan, A. Khoo, J.P. Cooke, Vasc Pharmacol 56, –288 (2012)

  33. B.J. Vorderwülbecke, J. Maroski, K. Fiedorowicz, L. Da Silva-Azevedo, A. Marki, A.R. Pries, A. Zakrzewicz, Am. J. Physiol. Heart Circ. Physiol. 302, H143 (2012)

    Article  Google Scholar 

  34. H.U. Wang, Z.F. Chen, D.J. Anderson, Cell 93(5), 741 (1998)

    Article  Google Scholar 

  35. T.P. Yamaguchi, D.J. Dumont, R.A. Conlon, M.L. Breitman, J. Rossant, Development 118, 489 (1993)

    Google Scholar 

  36. J. Yamashita, H. Itoh, M. Hirashima, M. Ogawa, S. Nishikawa, T. Yurugi, M. Naito, K. Nakao, S. Nishikawa, Nature 408, 92 (2000)

    Article  Google Scholar 

  37. X. Zhang, P. Jones, S.J. Haswell, Chem. Eng. J. 135S, S82 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Research Center for Biomedical Engineering in Toyo University. This study was also partially supported by Life Innovation Research Center in Toyo University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rsituko Ohtani-Kaneko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohtani-Kaneko, R., Sato, K., Tsutiya, A. et al. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system. Biomed Microdevices 19, 91 (2017). https://doi.org/10.1007/s10544-017-0229-5

Download citation

Keywords

  • Microfluidic culture system
  • Induced pluripotent stem cell-derived endothelial cells
  • Shear stress
  • Plasminogen activator inhibitor-1, PAI-1
  • Endothelial gene markers