Biomedical Microdevices

, 19:87 | Cite as

Passive, wireless transduction of electrochemical impedance across thin-film microfabricated coils using reflected impedance

  • Alex Baldwin
  • Lawrence Yu
  • Madelina Pratt
  • Kee Scholten
  • Ellis Meng


A new method of wirelessly transducing electrochemical impedance without integrated circuits or discrete electrical components was developed and characterized. The resonant frequency and impedance magnitude at resonance of a planar inductive coil is affected by the load on a secondary coil terminating in sensing electrodes exposed to solution (reflected impedance), allowing the transduction of the high-frequency electrochemical impedance between the two electrodes. Biocompatible, flexible secondary coils with sensing electrodes made from gold and Parylene C were microfabricated and the reflected impedance in response to phosphate-buffered saline solutions of varying concentrations was characterized. Both the resonant frequency and impedance at resonance were highly sensitive to changes in solution conductivity at the secondary electrodes, and the effects of vertical separation, lateral misalignment, and temperature changes were also characterized. Two applications of reflected impedance in biomedical sensors for hydrocephalus shunts and glucose sensing are discussed.


Electrochemical impedance Reflected impedance Passive Wireless Sensor Coils Inductive coupling Glucose sensing Hydrocephalus 



The authors would like to thank Ewina Pun and Sam Huynh for their help with device characterization, Dr. Donghai Zhu of the Keck Photonics Lab for assistance with fabrication, and all the members of the Biomedical Microsystems Lab of USC for their advice and support. This work was supported in part by the National Science Foundation under award EFRI-1332394.


  1. W.T. Abraham, P.B. Adamson, R.C. Bourge, M.F. Aaron, M.R. Costanzo, L.W. Stevenson, W. Strickland, S. Neelagaru, N. Raval, S. Krueger, Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: A randomised controlled trial. Lancet 377(9766), 658–666 (2011)CrossRefGoogle Scholar
  2. M.M. Ahmadi, G.A. Jullien, A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst. 3(3), 169–180 (2009)CrossRefGoogle Scholar
  3. O. Akar, T. Akin, K. Najafi, A wireless batch sealed absolute capacitive pressure sensor. Sensors Actuators A Phys. 95(1), 29–38 (2001)CrossRefGoogle Scholar
  4. A. Aschoff, P. Kremer, B. Hashemi, S. Kunze, The scientific history of hydrocephalus and its treatment. Neurosurg. Rev. 22(2–3), 67–93 (1999)CrossRefGoogle Scholar
  5. Y. Bäcklund, L. Rosengren, B. Hök, B. Svedbergh, Passive silicon transensor intended for biomedical, remote pressure monitoring. Sensors Actuators A Phys. 21(1), 58–61 (1990)CrossRefGoogle Scholar
  6. A. Baldwin, L. Yu and E. Meng, An electrochemical-based thermal flow sensor. Micro Electro Mechanical Systems (MEMS), 2016 I.E. 29th International Conference on, IEEE, (2016a)Google Scholar
  7. A. Baldwin, L. Yu, E. Meng, An electrochemical impedance-based thermal flow sensor for physiological fluids. J. Microelectromech. Syst. 25(6), 1015–1024 (2016b)CrossRefGoogle Scholar
  8. P.-J. Chen, S. Saati, R. Varma, M.S. Humayun, Y.-C. Tai, Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. J. Microelectromech. Syst. 19(4), 721–734 (2010)CrossRefGoogle Scholar
  9. L.Y. Chen, B.C.-K. Tee, A.L. Chortos, G. Schwartz, V. Tse, D.J. Lipomi, H.-S.P. Wong, M.V. McConnell, Z. Bao, Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014)CrossRefGoogle Scholar
  10. J. Drake, J. Kestle, S. Tuli, CSF shunts 50 years on–past, present and future. Childs Nerv. Syst. 16(10–11), 800–804 (2000)CrossRefGoogle Scholar
  11. R. Elshafey, A.C. Tavares, M. Siaj, M. Zourob, Electrochemical impedance immunosensor based on gold nanoparticles–protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens. Bioelectron. 50, 143–149 (2013)CrossRefGoogle Scholar
  12. M.A. Fonseca, M.G. Allen, J. Kroh, J. White, Flexible wireless passive pressure sensors for biomedical applications. Tech. Dig. Solid-State Sensor, Actuator, and Microsystems Workshop (Hilton Head 2006), 2006Google Scholar
  13. C.A. Gutierrez, R. Sheybani, E. Meng, Electrochemically-based dose measurement for closed-loop drug delivery applications. Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, IEEE, 2011Google Scholar
  14. C. Hassler, R.P. von Metzen, P. Ruther, T. Stieglitz, Characterization of parylene C as an encapsulation material for implanted neural prostheses. J. Biomed. Mater. Res. B Appl. Biomater. 93(1), 266–274 (2010)Google Scholar
  15. P. Horowitz, W. Hill, I. Robinson, The Art of Electronics (Cambridge university press, Cambridge, 1980)Google Scholar
  16. S. Hui, Planar wireless charging technology for portable electronic products and qi. Proc. IEEE 101(6), 1290–1301 (2013)CrossRefGoogle Scholar
  17. K.C. Katuri, S. Asrani, M.K. Ramasubramanian, Intraocular pressure monitoring sensors. IEEE Sensors J. 8(1), 12–19 (2008)CrossRefGoogle Scholar
  18. B.J. Kim, E. Meng, Micromachining of Parylene C for bioMEMS. Polym. Adv. Technol. 27(5), 564–576 (2015)CrossRefGoogle Scholar
  19. B.J. Kim, C.A. Gutierrez, E. Meng, Parylene-based electrochemical-MEMS force sensor for studies of intracortical probe insertion mechanics. J. Microelectromech. Syst. 24(5), 1534–1544 (2015)CrossRefGoogle Scholar
  20. B.J. Kim, W. Jin, A. Baldwin, L. Yu, E. Christian, M.D. Krieger, J.G. McComb, E. Meng, Parylene MEMS patency sensor for assessment of hydrocephalus shunt obstruction. Biomed. Microdevices 18(5), 87 (2016)CrossRefGoogle Scholar
  21. B. Kim, C. Gutierrez, E. Meng, In vitro characterization of a probe-mounted parylene-based pressure sensor array for intracortical applications. 7th Intl. Conf. on Microtechnologies in Medicine and Biology (MMB), (2013)Google Scholar
  22. Y.-T. Li, C.-H. Chang, J.-J. J. Chen, 陳家進, C.-C. Wang, C.-K. Liang, 梁 治國, Development of implantable wireless biomicrosystem for measuring electrode-tissue impedance. J. Med. Biol. Eng. 25(3), 1–7 (2005)Google Scholar
  23. R. Lo, P.-Y. Li, S. Saati, R.N. Agrawal, M.S. Humayun, E. Meng, A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed. Microdevices 11(5), 959 (2009)CrossRefGoogle Scholar
  24. M. Min, T. Parve, V. Kukk, A. Kuhlberg, An implantable analyzer of bio-impedance dynamics: mixed signal approach. IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188), 2001Google Scholar
  25. B. Mirza, V.W. Vanek, D.T. Kupensky, Pinch-off syndrome: Case report and collective review of the literature. Am. Surg. 70(7), 635–644 (2004)Google Scholar
  26. N. Oliver, C. Toumazou, A. Cass, D. Johnston, Glucose sensors: A review of current and emerging technology. Diabet. Med. 26(3), 197–210 (2009)CrossRefGoogle Scholar
  27. S.B. Palder, R.L. Kirkman, A.D. Whittemore, R.M. Hakim, J.M. Lazarus, N.L. Tilney, Vascular access for hemodialysis. Patency rates and results of revision. Ann. Surg. 202(2), 235 (1985)CrossRefGoogle Scholar
  28. J.E.B. Randles, Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1, 11–19 (1947)CrossRefGoogle Scholar
  29. F.L. Scott, M. Svjetlana, D.J. Matthew, L.V. Jerrold, C.M. Cameron, In vivo impedance spectroscopy of deep brain stimulation electrodes. J. Neural Eng. 6(4), 046001 (2009)CrossRefGoogle Scholar
  30. P.S. Shah, V.S. Shah, Continuous heparin infusion to prevent thrombosis and catheter occlusion in neonates with peripherally placed percutaneous central venous catheters. Cochrane Libr (2008)Google Scholar
  31. R. Sheybani, A. Cobo, E. Meng, Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors. Biomed. Microdevices 17(4), 74 (2015)CrossRefGoogle Scholar
  32. T. Stieglitz, S. Kammer, K. Koch, S. Wien, A. Robitzki, Encapsulation of flexible biomedical microimplants with parylene C. IFESS 2002 5, (2002)Google Scholar
  33. S. Tuli, J. Drake, J. Lawless, M. Wigg, M. Lamberti-Pasculli, Risk factors for repeated cerebrospinal shunt failures in pediatric patients with hydrocephalus. J. Neurosurg. 92(1), 31–38 (2000)CrossRefzbMATHGoogle Scholar
  34. A.C. van Bon, D. Dragt, J.H. DeVries, Significant time until catheter occlusion alerts in currently marketed insulin pumps at two basal rates. Diabetes Technol. Ther. 14(5), 447–448 (2012)CrossRefGoogle Scholar
  35. A. Vanhoestenberghe, N. Donaldson, Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices. J. Neural Eng. 10(3), 031002 (2013)CrossRefGoogle Scholar
  36. J. Wang, Glucose biosensors: 40 Years of advances and challenges. Electroanalysis 13(12), 983 (2001)CrossRefGoogle Scholar
  37. H.A. Wheeler, Formulas for the skin effect. Proc. IRE 30(9), 412–424 (1942)CrossRefGoogle Scholar
  38. N. Xue, S.-P. Chang, J.-B. Lee, A SU-8-based microfabricated implantable inductively coupled passive RF wireless intraocular pressure sensor. J. Microelectromech. Syst. 21(6), 1338–1346 (2012)CrossRefGoogle Scholar
  39. L. Yang, Y. Li, G.F. Erf, Interdigitated Array microelectrode-based electrochemical impedance Immunosensor for detection of Escherichia Coli O157:H7. Anal. Chem. 76(4), 1107–1113 (2004)CrossRefGoogle Scholar
  40. H. Yao, A.J. Shum, M. Cowan, I. Lähdesmäki, B.A. Parviz, A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 26(7), 3290–3296 (2011)CrossRefGoogle Scholar
  41. L. Yu, E. Meng, A microbubble pressure transducer with bubble nucleation core. Micro Electro Mechanical Systems (MEMS), 2014 I.E. 27th International Conference on, 2014Google Scholar
  42. J. Yu, S. Liu, H. Ju, Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol–gel membrane. Biosens. Bioelectron. 19(4), 401–409 (2003)CrossRefGoogle Scholar
  43. Yu, C.-M., L. Wang, E. Chau, R. H.-W. Chan, S.-L. Kong, M.-O. Tang, J. Christensen, R. W. Stadler and C.-P. Lau (2005). "Intrathoracic impedance monitoring in patients with heart failure." Correlation With Fluid Status and Feasibility of Early Warning Preceding Hospitalization 112(6): 841–848Google Scholar
  44. L. Yu, C.A. Gutierrez, E. Meng, An electrochemical microbubble-based MEMS pressure sensor. J. Microelectromech. Syst. 25(1), 144–152 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Alex Baldwin
    • 1
  • Lawrence Yu
    • 1
  • Madelina Pratt
    • 1
  • Kee Scholten
    • 1
  • Ellis Meng
    • 1
    • 2
  1. 1.Department of Biomedical Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Ming Hsieh Department of Electrical Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations