Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture

Abstract

This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung cancer cells on these membranes in a static well plate without surface modification. Surprisingly, due to three-dimensional (3D) and hydrophobic nature of the electrospun fibers, cells aggregated into 3D multicellular spheroids. These easily detachable and cost-effective scaffolds with controllable thicknesses and high tensile strength are good candidates for cell-stretching devices, organ-on-a-chip devices, tissue engineering and studies of non-adherent mammalian cancer stem cells.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. R.L. Andersson, V. Ström, U.W. Gedde, P.E. Mallon, M.S. Hedenqvist, R.T. Olsson, Sci. Rep. 4, 6335 (2014)

    Article  Google Scholar 

  2. G.M. Bayley, P.E. Mallon, Polymer. 53, 5523 (2012)

    Article  Google Scholar 

  3. E. Boyacı, N. Horzum, A. Çağır, M.M. Demir, A.E. Eroğlu, RSC Adv. 3, 22261 (2013)

    Article  Google Scholar 

  4. C. Carrizales, S. Pelfrey, R. Rincon, T.M. Eubanks, A. Kuang, M.J. McClure, G.L. Bowlin, J. Macossay, Polymer. Adv. Tech. 19, 124 (2008)

    Article  Google Scholar 

  5. A. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)

    Article  Google Scholar 

  6. M. Chen, C. Wang, W. Fang, J. Wang, W. Zhang, G. Jin, G. Diao, Langmuir. 29, 11858 (2013)

    Article  Google Scholar 

  7. W. Chen, R.H.W. Lam, J. Fu, Lab Chip. 12, 391 (2012)

    Article  Google Scholar 

  8. J. Fang, H. Shao, H. Niu and T. Lin, in Handbook of Smart Textiles, ed. By X. Tao (Springer, Singapore, 2014), p. 1

  9. G. Firpo, E. Angeli, L. Repetto, U. Valbusa, J. Membr. Sci. 481, 1 (2015)

    Article  Google Scholar 

  10. M. Haerst, V. Seitz, M. Ahrens, C. Boudot and E. Wintermante, in 6th European Conference of the International Federation for Medical and Biological Engineering (Dubrovnik, Croatia, 2014), pp. 537–540. https://doi.org/10.1007/978-3-319-11128-5_134

  11. S. Homaeigohar, M. Elbahri, Materials. 7, 1017 (2014). https://doi.org/10.3390/ma7021017

  12. D. Huh, H.J. Kim, J.P. Fraser, D.E. Shea, M. Khan, A. Bahinski, G.A. Hamilton, D.E. Ingber, Nat. Protoc. 8, 2135 (2013)

    Article  Google Scholar 

  13. D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber, Science. 328, 1662 (2010)

    Article  Google Scholar 

  14. R. Igreja, H. Domingos, J.P. Borges, C. Dias, Mater. Sci. Forum. 730-732, 197 (2013)

    Article  Google Scholar 

  15. L. Jamalzadeh, H. Ghafoori, R. Sariri, H. Rabuti, J. Nasirzade, H. Hasani, M.R. Aghamaali, Avicenna J. Med. Biochem. 4, e33453 (2016)

  16. N. Kashaninejad, M.R. Nikmaneshi, H. Moghadas, A. Kiyoumarsi Oskouei, M. Rismanian, M. Barisam, M.S. Saidi, B. Firoozabadi, Micromachines. 7, 130 (2016)

    Article  Google Scholar 

  17. S. Kaur, S. Sundarrajan, D. Rana, R. Sridhar, R. Gopal, T. Matsuura, S. Ramakrishna, J. Mater. Sci. 49, 6143 (2014)

    Article  Google Scholar 

  18. I.-D. Kim, S.-J. Choi and W.-H. Ryu, In Handbook of Nanomaterials Properties, ed. By B. Bhushan, D. Luo, S.R. Schricker, W. Sigmund, S. Zauscher (Springer, Berlin, 2014), p. 793

  19. Y.B. Kim, D. Cho, W.H. Park, J. Appl. Polym. Sci. 114, 3870 (2009)

    Article  Google Scholar 

  20. J. Matulevicius, L. Kliucininkas, D. Martuzevicius, E. Krugly, M. Tichonovas, J. Baltrusaitis, J. Nanomater. 2014, 14 (2014)

    Article  Google Scholar 

  21. N.-T. Nguyen, M. Hejazian, C.H. Ooi, N. Kashaninejad, Micromachines. 8, 186 (2017)

    Article  Google Scholar 

  22. H. Niu, H. Wang, H. Zhou, T. Lin, RSC Adv. 4, 11782 (2014)

    Article  Google Scholar 

  23. Q.P. Pham, U. Sharma, A.G. Mikos, Tissue Eng. 12, 1197 (2006)

    Article  Google Scholar 

  24. A. Raza, Y. Li, J. Sheng, J. Yu and B. Ding, in Electrospun Nanofibers for Energy and Environmental Applications, ed. By B. Ding, J. Yu (Springer, Berlin, 2014), p. 355

  25. L.-F. Ren, F. Xia, J. Shao, X. Zhang, J. Li, Desalination. 404, 155 (2017)

    Article  Google Scholar 

  26. D. Serbezeanu, A.M. Popa, T. Stelzig, I. Sava, R.M. Rossi, G. Fortunato, Text. Res. J. 85, 1763 (2015)

    Article  Google Scholar 

  27. T.J. Sill, H.A. von Recum, Biomaterials. 29, 1989 (2008)

    Article  Google Scholar 

  28. D.F. Stamatialis, B.J. Papenburg, M. Gironés, S. Saiful, S.N. Bettahalli, S. Schmitmeier, M. Wessling, J. Membr. Sci. 308, 1 (2008)

    Article  Google Scholar 

  29. S. Tungprapa, I. Jangchud, P. Ngamdee, M. Rutnakornpituk, P. Supaphol, Mater. Lett. 60, 2920 (2006)

    Article  Google Scholar 

  30. R. Xue, P. Behera, J. Xu, M.S. Viapiano, J.J. Lannutti, Sens. Actuator B-Chem. 192, 697 (2014)

    Article  Google Scholar 

  31. D. Yang, X. Liu, Y. Jin, Y. Zhu, D. Zeng, X. Jiang, H. Ma, Biomacromolecules. 10, 3335 (2009)

    Article  Google Scholar 

  32. E. Yilgor, O. Kaymakci, M. Isik, S. Bilgin, I. Yilgor, Appl. Surf. Sci. 258, 4246 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the funds and support from Iran’s National Elite Foundation (INEF).

Author information

Affiliations

Authors

Contributions

All authors contributed to conducting the experiments and writing the manuscript.

Corresponding authors

Correspondence to Mohammad Said Saidi or Nam-Trung Nguyen.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moghadas, H., Saidi, M.S., Kashaninejad, N. et al. Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture. Biomed Microdevices 19, 74 (2017). https://doi.org/10.1007/s10544-017-0215-y

Download citation

Keywords

  • PDMS membrane
  • Electrospinning cell culture
  • Hydrophobic nanofibers
  • Spheroid formation
  • Beads-free scaffolds