Advertisement

Biomedical Microdevices

, 19:71 | Cite as

A multiscale fluidic device for the study of dendrite-mediated cell to cell communication

  • Sean McCutcheon
  • Robert Majeska
  • Mitchell Schaffler
  • Maribel VazquezEmail author
Article

Abstract

Many cell types communicate by means of dendritic extensions via a multi-tiered set of geometric and chemical cues. Until recently, mimicking the compartmentalized in vivo cellular environment of dendrite-expressing cells such as osteocytes and motor neurons in a spatially and temporally controllable manner was limited by the challenges of in vitro device fabrication at submicron scales. Utilizing the improved resolution of current fabrication technology, we have designed a multiscale device, the Macro-micro-nano system, or Mμn, composed of two distinct cell-seeding and interrogation compartments separated by a nanochannel array. The array enables dendrite ingrowth, while providing a mechanism for fluidic sequestration and/or temporally-mediated diffusible signaling between cell populations. Modeling of the Mμn system predicted the ability to isolate diffusible signals, namely ATP. Empirical diffusion studies verified computational modeling. In addition, cell viability, dendrite interaction with the nanoarray, and cellular purinergic response to heat shock were experimentally evaluated within the device for both osteocytes and motor neurons. Our results describe a novel in vitro system in which dendrite-expressing cell types can be studied within nano-environments that mimic in vivo conditions. In particular, the Mμn system enables real-time observation of cell to cell communication between cell populations in distinct, but fluidically coupled regions.

Keywords

Microfluidics Purinergic sigaling Osteocytes Bone Lacunar canalicular system Neurons 

Notes

Acknowledgements

Tanya Singh, The City College of New York

National Institutes of Health Grant #5R01AR041210-23

National Science Foundation Grant #CBET0939511

National Institutes of Health Grant #R21EY026752

CUNY Advanced Science Research Center

Wallace H. Coulter Foundation

References

  1. E. Aarden, A.-M. Wassenaar, M.J. Alblas, P.J. Nijweide, Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochem. Cell Biol. 106, 495–501 (1996)CrossRefGoogle Scholar
  2. H. Aldskogius, E.N. Kozlova, Central neuron–glial and glial–glial interactions following axon injury. Prog. Neurobiol. 55, 1–26 (1998)CrossRefGoogle Scholar
  3. N.J. Allen, B.A. Barres, Neuroscience: Glia—More than just brain glue. Nature 457, 675–677 (2009)CrossRefGoogle Scholar
  4. J. Banchereau, R.M. Steinman, Dendritic cells and the control of immunity. Nature 392, 245–252 (1998)CrossRefGoogle Scholar
  5. S. Burra, D.P. Nicolella, W.L. Francis, C.J. Freitas, N.J. Mueschke, K. Poole, J.X. Jiang, Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc. Natl. Acad. Sci. 107, 13648–13653 (2010)CrossRefGoogle Scholar
  6. C.T. Culbertson, S.C. Jacobson, J. Michael Ramsey, Diffusion coefficient measurements in microfluidic devices. Talanta 56, 365–373 (2002)CrossRefGoogle Scholar
  7. R.D. Fields, G. Burnstock, Purinergic signalling in neuron–glia interactions. Nat. Rev. Neurosci. 7, 423–436 (2006)CrossRefGoogle Scholar
  8. D.C. Genetos, C.J. Kephart, Y. Zhang, C.E. Yellowley, H.J. Donahue, Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J. Cell. Physiol. 212, 207–214 (2007)CrossRefGoogle Scholar
  9. A. Hoebertz, S. Mahendran, G. Burnstock, T.R. Arnett, ATP and UTP at low concentrations strongly inhibit bone formation by osteoblasts: A novel role for the P2Y2 receptor in bone remodeling. J. Cell. Biochem. 86, 413–419 (2002)CrossRefGoogle Scholar
  10. T. Kalwarczyk, M. Tabaka, R. Holyst, Biologistics—diffusion coefficients for complete proteome of Escherichia Coli. Bioinformatics 28, 2971–2978 (2012)CrossRefGoogle Scholar
  11. Y. Kato, J.J. Windle, B.A. Koop, G.R. Mundy, L.F. Bonewald, Establishment of an osteocyte-like cell line, MLO-Y4. J. Bone Miner. Res. 12, 2014–2023 (1997)CrossRefGoogle Scholar
  12. T.M. Kringelbach, D. Aslan, I. Novak, P. Schwarz, N.R. Jørgensen, UTP-induced ATP release is a fine-tuned signalling pathway in osteocytes. Purinergic Signal 10, 337–347 (2014)CrossRefGoogle Scholar
  13. D.A. Lauffenburger, A.F. Horwitz, Cell migration: A physically integrated molecular process. Cell 84, 359–369 (1996)CrossRefGoogle Scholar
  14. M.D. Levenson, N. Viswanathan, R.A. Simpson, Improving resolution in photolithography with a phase-shifting mask. Electron Devices, IEEE Transactions on 29, 1828–1836 (1982)CrossRefGoogle Scholar
  15. K. Lingenhöhl, D.M. Finch, Morphological characterization of rat entorhinal neurons in vivo: Soma-dendritic structure and axonal domains. Exp. Brain Res. 84, 57–74 (1991)CrossRefGoogle Scholar
  16. X.L. Lu, B. Huo, M. Park, X.E. Guo, Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone 51, 466–473 (2012)CrossRefGoogle Scholar
  17. M.G. Lykissas, A.K. Batistatou, K.A. Charalabopoulos, A.E. Beris, The role of neurotrophins in axonal growth, guidance, and regeneration. Curr. Neurovasc. Res. 4, 143–151 (2007)CrossRefGoogle Scholar
  18. R. Malik, D. Burch, M. Bazant, G. Ceder, Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010)CrossRefGoogle Scholar
  19. McCutcheon, S., Unachukwu, U., Thakur, A., Majeska, R., Redenti, S., and Vazquez, M. (2016). In vitro formation of Neuroclusters in microfluidic devices and cell migration as a function of stromal-derived growth factor 1 gradients. Cell adhesion & migration, 0Google Scholar
  20. Nidadavolu, S.S. (2013). Analysis and comparison of parallel plate flow chambers to determine consistency of fluid forces on cellsGoogle Scholar
  21. A.F. Oberhauser, C. Badilla-Fernandez, M. Carrion-Vazquez, J.M. Fernandez, The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319, 433–447 (2002)CrossRefGoogle Scholar
  22. S. Orrenius, B. Zhivotovsky, P. Nicotera, Regulation of cell death: The calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552–565 (2003)CrossRefGoogle Scholar
  23. I.R. Orriss, G. Burnstock, T.R. Arnett, Purinergic signalling and bone remodelling. Curr. Opin. Pharmacol. 10, 322–330 (2010)CrossRefGoogle Scholar
  24. L.I. Plotkin, S.C. Manolagas, T. Bellido, Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival evidence for inside-out signaling leading to anoikis. J. Biol. Chem. 282, 24120–24130 (2007)CrossRefGoogle Scholar
  25. J.C.L. Plumier, D.A. Hopkins, H.A. Robertson, R.W. Currie, Constitutive expression of the 27-kDa heat shock protein (Hsp27) in sensory and motor neurons of the rat nervous system. J. Comp. Neurol. 384, 409–428 (1997)CrossRefGoogle Scholar
  26. J.T. Podichetty, D.V. Dhane, S.V. Madihally, Dynamics of diffusivity and pressure drop in flow-through and parallel-flow bioreactors during tissue regeneration. Biotechnol. Prog. 28, 1045–1054 (2012)CrossRefGoogle Scholar
  27. D. Rochon, I. Rousse, R. Robitaille, Synapse–glia interactions at the mammalian neuromuscular junction. J. Neurosci. 21, 3819–3829 (2001)Google Scholar
  28. M. Romanello, B. Pani, M. Bicego, P. D'Andrea, Mechanically induced ATP release from human osteoblastic cells. Biochem. Biophys. Res. Commun. 289, 1275–1281 (2001)CrossRefGoogle Scholar
  29. Schaap, A., and Bellouard, Y. (2013). Fabrication of topologically-complex 3D microstructures by femtosecond laser machining and polymer molding. Paper presented at: CLEO: Applications and Technology (Optical Society of America)Google Scholar
  30. M.B. Schaffler, W.-Y. Cheung, R. Majeska, O. Kennedy, Osteocytes: Master orchestrators of bone. Calcif. Tissue Int. 94, 5–24 (2014)CrossRefGoogle Scholar
  31. K.A. Schalper, H.A. Sánchez, S.C. Lee, G.A. Altenberg, M.H. Nathanson, J.C. Sáez, Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am. J. Phys. Cell Phys. 299, C1504–C1515 (2010)CrossRefGoogle Scholar
  32. Shao, P.G., van Kan, J.A., and Watt, F. (2010). Sub Micron Poly-Dimethyl Siloxane (PDMS) Replication Using Proton Beam Fabricated Nickel Moulds. Paper presented at: Key Engineering Materials (Trans Tech Publ)Google Scholar
  33. E. Takai, R.L. Mauck, C.T. Hung, X.E. Guo, Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure. J. Bone Miner. Res. 19, 1403–1410 (2004)CrossRefGoogle Scholar
  34. S.D. Tan, T.J. de Vries, A.M. Kuijpers-Jagtman, C.M. Semeins, V. Everts, J. Klein-Nulend, Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41, 745–751 (2007)CrossRefGoogle Scholar
  35. K. Tanaka-Kamioka, H. Kamioka, H. Ris, S.S. Lim, Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J. Bone Miner. Res. 13, 1555–1568 (1998)CrossRefGoogle Scholar
  36. D.T. Theodosis, D.A. Poulain, S.H.R. Oliet, Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88, 983–1008 (2008)CrossRefGoogle Scholar
  37. M.M. Thi, S. Islam, S.O. Suadicani, D.C. Spray, Connexin43 and pannexin1 channels in osteoblasts: Who is the "hemichannel"? J. Membr. Biol. 245, 401–409 (2012)CrossRefGoogle Scholar
  38. M.M. Thi, S.O. Suadicani, M.B. Schaffler, S. Weinbaum, D.C. Spray, Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require α(V)β(3) integrin. Proc. Natl. Acad. Sci. U. S. A. 110, 21012–21017 (2013)CrossRefGoogle Scholar
  39. K.J. Tomaselli, C.H. Damsky, L.F. Reichardt, Interactions of a neuronal cell line (PC12) with laminin, collagen IV, and fibronectin: Identification of integrin-related glycoproteins involved in attachment and process outgrowth. J. Cell Biol. 105, 2347–2358 (1987)CrossRefGoogle Scholar
  40. M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009)CrossRefGoogle Scholar
  41. C. Wei, B. Fan, D. Chen, C. Liu, Y. Wei, B. Huo, L. You, J. Wang, J. Chen, Osteocyte culture in microfluidic devices. Biomicrofluidics 9, 014109 (2015)CrossRefGoogle Scholar
  42. S. Weinbaum, S.C. Cowin, Y. Zeng, A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360 (1994)CrossRefGoogle Scholar
  43. H. Xu, S. Gu, M.A. Riquelme, S. Burra, D. Callaway, H. Cheng, T. Guda, J. Schmitz, R.J. Fajardo, S.L. Werner, et al., Connexin 43 channels are essential for normal bone structure and osteocyte viability. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 30, 436–448 (2015)CrossRefGoogle Scholar
  44. L.D. You, S. Weinbaum, S.C. Cowin, M.B. Schaffler, Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. A: Discov. Mol. Cell. Evol. Biol. 278, 505–513 (2004)CrossRefGoogle Scholar
  45. L. You, S. Temiyasathit, E. Tao, F. Prinz, C.R. Jacobs, 3D microfluidic approach to mechanical stimulation of osteocyte processes. Cell. Mol. Bioeng. 1, 103–107 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sean McCutcheon
    • 1
  • Robert Majeska
    • 1
  • Mitchell Schaffler
    • 1
  • Maribel Vazquez
    • 1
    Email author
  1. 1.The City College of New YorkNew YorkUSA

Personalised recommendations