Skip to main content

Advertisement

Log in

Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and Dengue at point-of-care

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Infectious diseases remain the world’s top contributors to death and disability, and, with recent outbreaks of Zika virus infections there has been an urgency for simple, sensitive and easily translatable point-of-care tests. Here we demonstrate a novel point-of-care platform to diagnose infectious diseases from whole blood samples. A microfluidic platform performs minimal sample processing in a user-friendly diagnostics card followed by real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on the same card with pre-dried primers specific to viral targets. Our point-of-care platform uses a commercial smartphone to acquire real-time images of the amplification reaction and displays a visual read-out of the assay. We apply this system to detect closely related Zika, Dengue (types 1 and 3) and Chikungunya virus infections from whole blood on the same pre-printed chip with high specificity and clinically relevant sensitivity. Limit of detection of 1.56e5 PFU/mL of Zika virus from whole blood was achieved through our platform. With the ability to quantitate the target nucleic acid, this platform can also perform point-of-care patient surveillance for pathogen load or select biomarkers in whole blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6|

Similar content being viewed by others

References

  • L.R. Baden, L.R. Petersen, D.J. Jamieson, A.M. Powers, M.A. Honein, N. Engl. J. Med. 374, 1552–1563 (2016)

    Article  Google Scholar 

  • K. Curtis, D. Rudolph, I. Nejad, J. Singleton, PLoS One (2012)

  • K.A. Curtis, D.L. Rudolph, D. Morrison, D. Guelig, S. Diesburg, D. McAdams, R.A. Burton, P. LaBarre, M. Owen, J. Virol, Methods 237, 132–137 (2016)

    Google Scholar 

  • G.L. Damhorst, C. Duarte-Guevara, W. Chen, T. Ghonge, B.T. Cunningham, R. Bashir, Eng. 1, 324–335 (2015)

  • C. Duarte, E. Salm, B. Dorvel, B. Reddy, R. Bashir, Biomed. Microdevices 15, 821–830 (2013)

    Article  Google Scholar 

  • C. Duarte-Guevara, F.-L. Lai, C.-W. Cheng, B. Reddy, E. Salm, V. Swaminathan, Y.-K. Tsui, H.C. Tuan, A. Kalnitsky, Y.-S. Liu, R. Bashir, Anal. Chem. 86, 8359–8367 (2014)

    Article  Google Scholar 

  • C. Duarte-Guevara, V.V. Swaminathan, B. Reddy, J.-C. Huang, Y.-S. Liu, R. Bashir, RSC Adv. 6, 103872–103887 (2016)

    Article  Google Scholar 

  • O. Faye, O. Faye, A. Dupressoir, M. Weidmann, M. Ndiaye, A. Alpha. 43, 96–101 (2008)

  • C. Fourcade, J. Mansuy, M. Dutertre, M. Delpech, B. Marchou, P. Delobel, J. Izopet, G. Martin-blondel, J. Clin. Virol. 82, 1–4 (2016)

    Article  Google Scholar 

  • A. Gourinat, O. O. Connor, E. Calvez, C. Goarant, Emerg. Infect. Dis. 21, 84–86 (2015)

  • S. Hu, M. Li, L. Zhong, S. Lu, Z. Liu, J. Pu, J. Wen, BMC Mol. Biol. 1–15 (2015)

  • S. Kemleu, D. Guelig, C. Eboumbou Moukoko, E. Essangui, S. Diesburg, A. Mouliom, B. Melingui, J. Manga, C. Donkeu, A. Epote, G. Texier, P. LaBarre, R. Burton, L. Ayong, PLoS One 11, e0165506 (2016)

    Article  Google Scholar 

  • W. Kleber de Oliveira, J. Cortez-Escalante, W.T.G.H. De Oliveira, G.M.I. do Carmo, C.M.P. Henriques, G.E. Coelho, G.V. Araújo de França, MMWR Morb. Mortal. Wkly Rep. 65, 242–247 (2016)

    Article  Google Scholar 

  • C. Klungthong, R.V. Gibbons, B. Thaisomboonsuk, A. Nisalak, S. Kalayanarooj, V. Thirawuth, N. Nutkumhang, M.P. Mammen, R.G. Jarman, J. Clin. Microbiol. 45, 2480–2485 (2007)

    Article  Google Scholar 

  • L. Lai, T.H. Lee, L. Tobler, L. Wen, P. Shi, J. Alexander, H. Ewing, M. Busch, Transf. 52, 447–454 (2012)

  • R. S. Lanciotti, O. L. Kosoy, J. J. Laven, J. O. Velez, A. J. Lambert, A. J. Johnson, S. M. Stan, M. R. Duffy, 14 (2008)

  • R. S. Lanciotti, A. J. Lambert, M. Holodniy, S. Saavedra, C. Castillo, Emerg. Infect. Dis. 22, 2015–2017 (2016)

  • M.C. Lanteri, T.H. Lee, L. Wen, Z. Kaidarova, M.D. Bravo, N.E. Kiely, H.T. Kamel, L.H. Tobler, P.J. Norris, M.P. Busch, Transfusion 54, 3232–3241 (2014)

    Article  Google Scholar 

  • D. Lee, Y. Shin, S. Chung, K. S. Hwang, D. S. Yoon, J. H. Lee, Anal. Chem. 88(24), 12272–12278 (2016). doi:10.1021/doiacs.analchem.6b03460

  • J. Lessler, L. H. Chaisson, L. M. Kucirka, Q. Bi, K. Grantz, H. Salje, A. C. Carcelen, C. T. Ott, J. S. Sheffield, N. M. Ferguson, D. A. T. Cummings, C. J. E. Metcalf, I. Rodriguez-Barraquer, Sci. 46(80), 601–604 (2016)

  • V. van der Linden, A. Pessoa, W. Dobyns, A.J. Barkovich, H. van der L. Júnior, E.L.R. Filho, E.M. Ribeiro, M. de C. Leal, P.P. de A. Coimbra, M. de F. V. V. Aragão, I. Verçosa, C. Ventura, R.C. Ramos, D.D.C.S. Cruz, M.T. Cordeiro, V.M.R. Mota, M. Dott, C. Hillard, C.A. Moore, MMWR Morb. Mortal. Wkly Rep. 65, 1343–1348 (2016)

    Article  Google Scholar 

  • Y. Lustig, E. Mendelson, N. Paran, S. Melamed, E. Schwartz, 1–4 (2016a)

  • Y. Lustig, B. Mannasse, R. Koren, S. Katz-likvornik, 54, 1–16 (2016b)

  • K. O. Murray, R. Gorchakov, A. R. Carlson, R. Berry, L. Lai, M. Natrajan, M. N. Garcia, A. Correa, S. M. Patel, K. Aagaard, M. J. Mulligan, Emerg. Infect. Dis. 23, 99–101 (2017)

  • D. Musso, C. Roche, T.-X. Nhan, E. Robin, A. Teissier, V.-M. Cao-Lormeau, Detection of Zika virus in saliva, 68, (2015)

  • T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, 28, (2000)

  • T. Notomi, Y. Mori, N. Tomita, H. Kanda, J. Microbiol. 53, 1–5 (2015)

    Article  Google Scholar 

  • K. Pardee, A.A. Green, M.K. Takahashi, D. Braff, G. Lambert, J.W. Lee, T. Ferrante, D. Ma, N. Donghia, M. Fan, N.M. Daringer, I. Bosch, D.M. Dudley, D.H. O’Connor, L. Gehrke, J.J. Collins, Cell 165, 1255–1266 (2016)

    Article  Google Scholar 

  • M. Parida, G. Posadas, S. Inoue, F. Hasebe, K. Morita, 42, 257–263 (2004)

  • M. M. Parida, S. R. Santhosh, P. K. Dash, N. K. Tripathi, V. Lakshmi, N. Mamidi, A. Shrivastva, N. Gupta, P. Saxena, J. P. Babu, P. V. L. Rao, J. Clin. Microbiol. 45, 351–357 (2007)

  • M. Rios, S. Daniel, C. Chancey, I.K. Hewlett, S.L. Stramer, Clin. Infect. Dis. 45, 181–186 (2007)

    Article  Google Scholar 

  • M. Safavieh, M. K. Kanakasabapathy, F. Tarlan, M. uddin Ahmed, M. Zourob, W. Asghar, H. Shafiee, ACS Biomater. Sci. Eng. (2016). doi:10.1021/acsbiomaterials.5b00449

  • J. Song, M.G. Mauk, B.A. Hackett, S. Cherry, H.H. Bau, C. Liu, Anal. Chem. 88, 7289–7294 (2016)

    Article  Google Scholar 

  • S. Swaminathan, R. Schlaberg, J. Lewis, K. E. Hanson, M. R. Couturier, 1907–1909 (2016)

  • B. Tian, Z. Qiu, J. Ma, T. Zardán Gómez de la Torre, C. Johansson, P. Svedlindh, M. Strömberg, Biosens. Bioelectron. 86, 420–425 (2016)

    Article  Google Scholar 

  • J. J. Waggoner, A. Pinsky, J. Clin. Microbiol. 54, 860–867 (2016)

  • J. J. Waggoner, L. Gresh, A. Mohamed-hadley, G. Ballesteros, M. Jose, V. Davila, Y. Tellez, M. K. Sahoo, A. Balmaseda, E. Harris, B. A. Pinsky, 22 (2016a)

  • J.J. Waggoner, L. Gresh, M.J. Vargas, G. Ballesteros, Y. Tellez, K.J. Soda, M.K. Sahoo, A. Nuñez, A. Balmaseda, E. Harris, B.A. Pinsky, Clin. Infect. Dis. 63, 1–7 (2016b)

    Article  Google Scholar 

  • X. Wang, F. Yin, Y. Bi, G. Cheng, J. Li, L. Hou, Y. Li, B. Yang, W. Liu, L. Yang, J. Virol, Methods 238, 86–93 (2016)

    Google Scholar 

  • N. N. Watkins, U. Hassan, G. Damhorst, H. Ni, A. Vaid, W. Rodriguez, R. Bashir, Sci. Transl. Med. (2013). doi:10.1126/scitranslmed.3006870

  • P. Yager, G.J. Domingo, J. Gerdes, Annu. Rev. Biomed. Eng. 10, 107–144 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Micro and Nanotechnology Laboratory at UIUC for facilitating the chip fabrication. The work was funded by NSF grant 1534126 and the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Contributions

A.G., A.O., G.L.D, B.T.C and R.B conceived the idea and designed the study. A.G. and A.O., designed and performed the experiments. G.L.D and A.B assisted with the experiments and provided intellectual inputs. H.Y. developed the cradle interface for the smartphone and performed the setup characterization experiments. W.C. and F.S developed the fabrication process for the microfluidic chip. A.G developed image processing algorithms to derive fluorescence intensity values from the assay lanes of the microfluidic chip. All wrote and edited the manuscript.

Corresponding authors

Correspondence to B. T. Cunningham or R. Bashir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Electronic supplementary material

ESM 1

(DOCX 2543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguli, A., Ornob, A., Yu, H. et al. Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and Dengue at point-of-care. Biomed Microdevices 19, 73 (2017). https://doi.org/10.1007/s10544-017-0209-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0209-9

Keywords

Navigation