Biomedical Microdevices

, 19:73 | Cite as

Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and Dengue at point-of-care

Article

Abstract

Infectious diseases remain the world’s top contributors to death and disability, and, with recent outbreaks of Zika virus infections there has been an urgency for simple, sensitive and easily translatable point-of-care tests. Here we demonstrate a novel point-of-care platform to diagnose infectious diseases from whole blood samples. A microfluidic platform performs minimal sample processing in a user-friendly diagnostics card followed by real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on the same card with pre-dried primers specific to viral targets. Our point-of-care platform uses a commercial smartphone to acquire real-time images of the amplification reaction and displays a visual read-out of the assay. We apply this system to detect closely related Zika, Dengue (types 1 and 3) and Chikungunya virus infections from whole blood on the same pre-printed chip with high specificity and clinically relevant sensitivity. Limit of detection of 1.56e5 PFU/mL of Zika virus from whole blood was achieved through our platform. With the ability to quantitate the target nucleic acid, this platform can also perform point-of-care patient surveillance for pathogen load or select biomarkers in whole blood.

Keywords

Loop mediated isothermal amplification Point-of-care diagnostics Zika diagnostics Smartphone diagnostics Hands-free microfluidics 

Notes

Acknowledgements

We thank the staff at the Micro and Nanotechnology Laboratory at UIUC for facilitating the chip fabrication. The work was funded by NSF grant 1534126 and the University of Illinois at Urbana-Champaign.

Author’s Contributions

A.G., A.O., G.L.D, B.T.C and R.B conceived the idea and designed the study. A.G. and A.O., designed and performed the experiments. G.L.D and A.B assisted with the experiments and provided intellectual inputs. H.Y. developed the cradle interface for the smartphone and performed the setup characterization experiments. W.C. and F.S developed the fabrication process for the microfluidic chip. A.G developed image processing algorithms to derive fluorescence intensity values from the assay lanes of the microfluidic chip. All wrote and edited the manuscript.

Compliance with ethical standards

Competing interests

The authors declare no competing financial interests.

Supplementary material

10544_2017_209_MOESM1_ESM.docx (2.5 mb)
ESM 1(DOCX 2543 kb)

References

  1. L.R. Baden, L.R. Petersen, D.J. Jamieson, A.M. Powers, M.A. Honein, N. Engl. J. Med. 374, 1552–1563 (2016)CrossRefGoogle Scholar
  2. K. Curtis, D. Rudolph, I. Nejad, J. Singleton, PLoS One (2012)Google Scholar
  3. K.A. Curtis, D.L. Rudolph, D. Morrison, D. Guelig, S. Diesburg, D. McAdams, R.A. Burton, P. LaBarre, M. Owen, J. Virol, Methods 237, 132–137 (2016)Google Scholar
  4. G.L. Damhorst, C. Duarte-Guevara, W. Chen, T. Ghonge, B.T. Cunningham, R. Bashir, Eng. 1, 324–335 (2015)Google Scholar
  5. C. Duarte, E. Salm, B. Dorvel, B. Reddy, R. Bashir, Biomed. Microdevices 15, 821–830 (2013)CrossRefGoogle Scholar
  6. C. Duarte-Guevara, F.-L. Lai, C.-W. Cheng, B. Reddy, E. Salm, V. Swaminathan, Y.-K. Tsui, H.C. Tuan, A. Kalnitsky, Y.-S. Liu, R. Bashir, Anal. Chem. 86, 8359–8367 (2014)CrossRefGoogle Scholar
  7. C. Duarte-Guevara, V.V. Swaminathan, B. Reddy, J.-C. Huang, Y.-S. Liu, R. Bashir, RSC Adv. 6, 103872–103887 (2016)CrossRefGoogle Scholar
  8. O. Faye, O. Faye, A. Dupressoir, M. Weidmann, M. Ndiaye, A. Alpha. 43, 96–101 (2008)Google Scholar
  9. C. Fourcade, J. Mansuy, M. Dutertre, M. Delpech, B. Marchou, P. Delobel, J. Izopet, G. Martin-blondel, J. Clin. Virol. 82, 1–4 (2016)CrossRefGoogle Scholar
  10. A. Gourinat, O. O. Connor, E. Calvez, C. Goarant, Emerg. Infect. Dis. 21, 84–86 (2015)Google Scholar
  11. S. Hu, M. Li, L. Zhong, S. Lu, Z. Liu, J. Pu, J. Wen, BMC Mol. Biol. 1–15 (2015)Google Scholar
  12. S. Kemleu, D. Guelig, C. Eboumbou Moukoko, E. Essangui, S. Diesburg, A. Mouliom, B. Melingui, J. Manga, C. Donkeu, A. Epote, G. Texier, P. LaBarre, R. Burton, L. Ayong, PLoS One 11, e0165506 (2016)CrossRefGoogle Scholar
  13. W. Kleber de Oliveira, J. Cortez-Escalante, W.T.G.H. De Oliveira, G.M.I. do Carmo, C.M.P. Henriques, G.E. Coelho, G.V. Araújo de França, MMWR Morb. Mortal. Wkly Rep. 65, 242–247 (2016)CrossRefGoogle Scholar
  14. C. Klungthong, R.V. Gibbons, B. Thaisomboonsuk, A. Nisalak, S. Kalayanarooj, V. Thirawuth, N. Nutkumhang, M.P. Mammen, R.G. Jarman, J. Clin. Microbiol. 45, 2480–2485 (2007)CrossRefGoogle Scholar
  15. L. Lai, T.H. Lee, L. Tobler, L. Wen, P. Shi, J. Alexander, H. Ewing, M. Busch, Transf. 52, 447–454 (2012)Google Scholar
  16. R. S. Lanciotti, O. L. Kosoy, J. J. Laven, J. O. Velez, A. J. Lambert, A. J. Johnson, S. M. Stan, M. R. Duffy, 14 (2008)Google Scholar
  17. R. S. Lanciotti, A. J. Lambert, M. Holodniy, S. Saavedra, C. Castillo, Emerg. Infect. Dis. 22, 2015–2017 (2016)Google Scholar
  18. M.C. Lanteri, T.H. Lee, L. Wen, Z. Kaidarova, M.D. Bravo, N.E. Kiely, H.T. Kamel, L.H. Tobler, P.J. Norris, M.P. Busch, Transfusion 54, 3232–3241 (2014)CrossRefGoogle Scholar
  19. D. Lee, Y. Shin, S. Chung, K. S. Hwang, D. S. Yoon, J. H. Lee, Anal. Chem. 88(24), 12272–12278 (2016). doi:10.1021/doiacs.analchem.6b03460
  20. J. Lessler, L. H. Chaisson, L. M. Kucirka, Q. Bi, K. Grantz, H. Salje, A. C. Carcelen, C. T. Ott, J. S. Sheffield, N. M. Ferguson, D. A. T. Cummings, C. J. E. Metcalf, I. Rodriguez-Barraquer, Sci. 46(80), 601–604 (2016)Google Scholar
  21. V. van der Linden, A. Pessoa, W. Dobyns, A.J. Barkovich, H. van der L. Júnior, E.L.R. Filho, E.M. Ribeiro, M. de C. Leal, P.P. de A. Coimbra, M. de F. V. V. Aragão, I. Verçosa, C. Ventura, R.C. Ramos, D.D.C.S. Cruz, M.T. Cordeiro, V.M.R. Mota, M. Dott, C. Hillard, C.A. Moore, MMWR Morb. Mortal. Wkly Rep. 65, 1343–1348 (2016)CrossRefGoogle Scholar
  22. Y. Lustig, E. Mendelson, N. Paran, S. Melamed, E. Schwartz, 1–4 (2016a)Google Scholar
  23. Y. Lustig, B. Mannasse, R. Koren, S. Katz-likvornik, 54, 1–16 (2016b)Google Scholar
  24. K. O. Murray, R. Gorchakov, A. R. Carlson, R. Berry, L. Lai, M. Natrajan, M. N. Garcia, A. Correa, S. M. Patel, K. Aagaard, M. J. Mulligan, Emerg. Infect. Dis. 23, 99–101 (2017)Google Scholar
  25. D. Musso, C. Roche, T.-X. Nhan, E. Robin, A. Teissier, V.-M. Cao-Lormeau, Detection of Zika virus in saliva, 68, (2015)Google Scholar
  26. T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, 28, (2000)Google Scholar
  27. T. Notomi, Y. Mori, N. Tomita, H. Kanda, J. Microbiol. 53, 1–5 (2015)CrossRefGoogle Scholar
  28. K. Pardee, A.A. Green, M.K. Takahashi, D. Braff, G. Lambert, J.W. Lee, T. Ferrante, D. Ma, N. Donghia, M. Fan, N.M. Daringer, I. Bosch, D.M. Dudley, D.H. O’Connor, L. Gehrke, J.J. Collins, Cell 165, 1255–1266 (2016)CrossRefGoogle Scholar
  29. M. Parida, G. Posadas, S. Inoue, F. Hasebe, K. Morita, 42, 257–263 (2004)Google Scholar
  30. M. M. Parida, S. R. Santhosh, P. K. Dash, N. K. Tripathi, V. Lakshmi, N. Mamidi, A. Shrivastva, N. Gupta, P. Saxena, J. P. Babu, P. V. L. Rao, J. Clin. Microbiol. 45, 351–357 (2007)Google Scholar
  31. M. Rios, S. Daniel, C. Chancey, I.K. Hewlett, S.L. Stramer, Clin. Infect. Dis. 45, 181–186 (2007)CrossRefGoogle Scholar
  32. M. Safavieh, M. K. Kanakasabapathy, F. Tarlan, M. uddin Ahmed, M. Zourob, W. Asghar, H. Shafiee, ACS Biomater. Sci. Eng. (2016). doi:10.1021/acsbiomaterials.5b00449
  33. J. Song, M.G. Mauk, B.A. Hackett, S. Cherry, H.H. Bau, C. Liu, Anal. Chem. 88, 7289–7294 (2016)CrossRefGoogle Scholar
  34. S. Swaminathan, R. Schlaberg, J. Lewis, K. E. Hanson, M. R. Couturier, 1907–1909 (2016)Google Scholar
  35. B. Tian, Z. Qiu, J. Ma, T. Zardán Gómez de la Torre, C. Johansson, P. Svedlindh, M. Strömberg, Biosens. Bioelectron. 86, 420–425 (2016)CrossRefGoogle Scholar
  36. J. J. Waggoner, A. Pinsky, J. Clin. Microbiol. 54, 860–867 (2016)Google Scholar
  37. J. J. Waggoner, L. Gresh, A. Mohamed-hadley, G. Ballesteros, M. Jose, V. Davila, Y. Tellez, M. K. Sahoo, A. Balmaseda, E. Harris, B. A. Pinsky, 22 (2016a)Google Scholar
  38. J.J. Waggoner, L. Gresh, M.J. Vargas, G. Ballesteros, Y. Tellez, K.J. Soda, M.K. Sahoo, A. Nuñez, A. Balmaseda, E. Harris, B.A. Pinsky, Clin. Infect. Dis. 63, 1–7 (2016b)CrossRefGoogle Scholar
  39. X. Wang, F. Yin, Y. Bi, G. Cheng, J. Li, L. Hou, Y. Li, B. Yang, W. Liu, L. Yang, J. Virol, Methods 238, 86–93 (2016)Google Scholar
  40. N. N. Watkins, U. Hassan, G. Damhorst, H. Ni, A. Vaid, W. Rodriguez, R. Bashir, Sci. Transl. Med. (2013). doi:10.1126/scitranslmed.3006870
  41. P. Yager, G.J. Domingo, J. Gerdes, Annu. Rev. Biomed. Eng. 10, 107–144 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • A. Ganguli
    • 1
    • 2
  • A. Ornob
    • 1
    • 2
  • H. Yu
    • 2
    • 4
  • G. L. Damhorst
    • 1
    • 2
    • 3
  • W. Chen
    • 2
    • 4
  • F. Sun
    • 2
    • 4
  • A. Bhuiya
    • 1
    • 2
  • B. T. Cunningham
    • 1
    • 2
    • 4
  • R. Bashir
    • 1
    • 2
    • 4
    • 5
  1. 1.Department of BioengineeringUniversity of Illinois at Urbana-ChampaignChampaignUSA
  2. 2.Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana-ChampaignChampaignUSA
  3. 3.College of Medicine at Urbana-ChampaignUniversity of IllinoisChampaignUSA
  4. 4.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignChampaignUSA
  5. 5.Carle Illinois College of MedicineUrbanaUSA

Personalised recommendations