Skip to main content

Advertisement

Log in

An array of porous microneedles for transdermal monitoring of intercellular swelling

Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An array of porous microneedles was developed for minimally-invasive transdermal electrolytic connection through the human skin barrier, the stratum corneum. The length of microneedle was designed to be 100 μm so that it penetrates into the epidermis layer without pain. Each microneedle was supported by a thicker cylindrical post protruding from a planar substrate to realize its effective penetration even into elastic human skin. Since this support (post and substrate) was equally porous as the needles, the needle chip was entirely permeable for electrolyte. This ion-conductive porous microneedle array was applied to the transdermal conductometry with small direct current for local monitoring of intercellular swelling, edema. The porous needle-based electrode system could be a platform for various transdermal electrical diagnosis and treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • S.R. Abbas, F. Zhu, N.W. Levin, J. Renal Nutrition 25, 234–237 (2015)

    Article  Google Scholar 

  • S. Andree, H. Wilms, J. Helfmann, Med. Laser Appl. 26, 109–118 (2011)

    Article  Google Scholar 

  • K. Aukland, R.K. Reed, Physiol. Rev. 73, 1–78 (1993)

    Google Scholar 

  • S.I. Bîrlea, P.P. Breen, G.J. Corley, N.M. Bîrlea, F. Quondamatteo, G. ÓLaighin, Physiol. Meas. 35, 231–252 (2014)

    Article  Google Scholar 

  • P. Bogonez-Franco, L. Nescolarde, E. McAdams, J. Rosell-Ferrer, Physiol. Meas. 36, 85–106 (2015)

    Article  Google Scholar 

  • M. Boone, S. Norrenberg, G. Jemec, V. Del Marmol, Arch. Dermatol. Res. 305, 283–297 (2013)

    Article  Google Scholar 

  • E. Caffarel-Salvador, A.J. Brady, E. Eltayib, T. Meng, A. Alonso-Vicente, P. Gonzalez-Vazquez, B.M. Torrisi, E.M. Vicente-Perez, K. Mooney, D.S. Jones, S.E.J. Bell, C.P. McCoy, H.O. McCarthy, J.C. McElnay, R.F. Donnelly, PLoS One 10, e0145644 (2015)

    Article  Google Scholar 

  • S.P. Davis, W. Martanto, M.G. Allen, M.R. Prausnitz, IEEE Trans. Biomed. Eng. 52, 909–915 (2005)

    Article  Google Scholar 

  • A. De Lorenzo, A. Andreoli, J. Matthie, P. Withers, J. Appl. Physiol. 82, 1542–1558 (1997)

    Google Scholar 

  • R.F. Donnelly, T.R.R. Singh, M.J. Garland, K. Migalska, R. Majithiya, C.M. McCrudden, P.L. Kole, T.M.T. Mahmood, H.O. McCarthy, A.D. Woolfson, Adv. Funct. Mater. 22, 4879–4890 (2012)

    Article  Google Scholar 

  • K.F. Feingold, D. Denda, Clin. Dermatol. 30, 263–268 (2012)

    Article  Google Scholar 

  • L.H. Grecco, S. Li, S. Michel, L. Castillo-Saavedra, A. Mourdoukoutas, M. Bikson, F. Fregni, J. Neuro-Oncol. 3, 73–82 (2015)

    Google Scholar 

  • K. Hashimoto, J. Invest. Dermatol. 57, 17–31 (1971)

    Article  Google Scholar 

  • L. Humrez, M. Ramos, A. Al-Jumaily, M. Petchu, J. Ingram, J. Polym. Res. 18, 1043–1052 (2011)

    Article  Google Scholar 

  • J. Ji, F.E.H. Tay, J. Miao, C. Iliescu, J. Micromech. Microeng. 16, 958–964 (2006)

    Article  Google Scholar 

  • H. Kataoka, Clin. Cardiol. 36, 555–559 (2013)

    Article  Google Scholar 

  • L. Liu, H. Kai, K. Nagamine, Y. Ogawa, M. Nishizawa, RSC Adv. 6, 48630–48635 (2016)

    Article  Google Scholar 

  • S. MacNeil, Nature 445, 874–880 (2007)

    Article  Google Scholar 

  • A. McConville, J. Davis, Electrochem. Commun. 72, 162–165 (2016)

    Article  Google Scholar 

  • N. Meziane, J.G. Webster, M. Attari, A.J. Nimunkar, Physiol. Meas. 34, R47–R69 (2013)

    Article  Google Scholar 

  • M.S. Mialich, J.M.F. Sicchieri, A.A.J. Junior, Int. J. Clin. Nutr. 2, 1–10 (2014)

    Google Scholar 

  • P.R. Miller, X. Xiao, I. Brener, D.B. Burckel, R. Narayan, R. Polsky, Adv. Healthcare Mater. 3, 876–881 (2014)

    Article  Google Scholar 

  • P.R. Miller, R.J. Narayan, R. Polsky, J. Mater. Chem. B 4, 1379–1383 (2016)

    Article  Google Scholar 

  • E.V. Mukerjee, S.D. Collins, R.R. Isseroff, R.L. Smith, Sens. Actuators, A 114, 267–275 (2004)

    Article  Google Scholar 

  • O. Olatunji, D.B. Das, M.J. Garland, L. Belaid, R.F. Donnelly, J. Pharm. Sci. 102, 1209–1221 (2013)

    Article  Google Scholar 

  • J.H. Park, S.O. Choi, R. Kamath, Y.K. Yoon, M.G. Allen, M.R. Prausnitz, Biomed. Microdevices 9, 223–234 (2006)

    Article  Google Scholar 

  • T. Schwarts, J. Clin. Invest. 106, 9–10 (2000)

    Article  Google Scholar 

  • O.A. Shergold, N.A. Fleck, Proc. R. Soc. Lond. 460, 3037–3058 (2004)

    Article  Google Scholar 

  • M. Shirkhanzadeh, J. Mater. Sci. Mater. Med. 16, 37–45 (2005)

    Article  Google Scholar 

  • L. Ventrelli, L. Marsilio, G. Strambini, Barillaro, Adv. Healthcare Mater. 4, 2606–2640 (2015)

    Article  Google Scholar 

  • M. Verhoeven, S. Bystrova, L. Winnubst, H. Qureshi, T.D. de Gruijl, R.J. Scheper, R. Luttge, Microelectron. Eng. 98, 659–662 (2012)

    Article  Google Scholar 

  • H.C. Wang, A.R. Lee, J. Food Drug Anal. 23, 191 (2015)

    Article  Google Scholar 

  • J.R. Windmiller, G. Valdés-Ramírez, N. Zhou, M. Zhou, P.R. Miller, C. Jin, S.M. Brozik, R. Polsky, E. Katz, R. Narayan, J. Wang, Electroanalysis 23, 2302–2309 (2011)

    Article  Google Scholar 

  • T.W. Wong, J. Control. Release 193, 257–269 (2014)

    Article  Google Scholar 

  • F. Zhu, M.K. Kuhlmann, P. Kotanko, E. Seibert, E.F. Leonard, N.W. Levin, Physiol. Meas. 29, S503–S516 (2008)

    Article  Google Scholar 

  • F. Zhu, P. Kotanko, G.J. Handelman, J.G. Raimann, L. Liu, M. Carter, M.K. Kuhlmann, E. Seibert, E.F. Leonard, N.W. Levin, Physiol. Meas. 32, 887–902 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Nobuhiro Nagai in Tohoku University for his assistance for OCT imaging. This work was partly supported by Center of Innovation Program (COI) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matsuhiko Nishizawa.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the standards of Ethics Committee of Graduate School of Engineering, Tohoku University (16A-4) and with the 1964 Helsinki declaration and its later amendments. Before experiments, the purpose of this study was explained to subjects who signed the university institutional approved informed consent.

Electronic supplementary material

ESM 1

(DOCX 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagamine, K., Kubota, J., Kai, H. et al. An array of porous microneedles for transdermal monitoring of intercellular swelling. Biomed Microdevices 19, 68 (2017). https://doi.org/10.1007/s10544-017-0207-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0207-y

Keywords

Navigation