Biomedical Microdevices

, 19:68 | Cite as

An array of porous microneedles for transdermal monitoring of intercellular swelling

  • Kuniaki Nagamine
  • Jun Kubota
  • Hiroyuki Kai
  • Yoshinobu Ono
  • Matsuhiko NishizawaEmail author


An array of porous microneedles was developed for minimally-invasive transdermal electrolytic connection through the human skin barrier, the stratum corneum. The length of microneedle was designed to be 100 μm so that it penetrates into the epidermis layer without pain. Each microneedle was supported by a thicker cylindrical post protruding from a planar substrate to realize its effective penetration even into elastic human skin. Since this support (post and substrate) was equally porous as the needles, the needle chip was entirely permeable for electrolyte. This ion-conductive porous microneedle array was applied to the transdermal conductometry with small direct current for local monitoring of intercellular swelling, edema. The porous needle-based electrode system could be a platform for various transdermal electrical diagnosis and treatments.


Porous microneedle Electrolyte permeable Edema Transdermal monitoring 



We thank Dr. Nobuhiro Nagai in Tohoku University for his assistance for OCT imaging. This work was partly supported by Center of Innovation Program (COI) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the standards of Ethics Committee of Graduate School of Engineering, Tohoku University (16A-4) and with the 1964 Helsinki declaration and its later amendments. Before experiments, the purpose of this study was explained to subjects who signed the university institutional approved informed consent.

Supplementary material

10544_2017_207_MOESM1_ESM.docx (444 kb)
ESM 1 (DOCX 443 kb)


  1. S.R. Abbas, F. Zhu, N.W. Levin, J. Renal Nutrition 25, 234–237 (2015)CrossRefGoogle Scholar
  2. S. Andree, H. Wilms, J. Helfmann, Med. Laser Appl. 26, 109–118 (2011)CrossRefGoogle Scholar
  3. K. Aukland, R.K. Reed, Physiol. Rev. 73, 1–78 (1993)Google Scholar
  4. S.I. Bîrlea, P.P. Breen, G.J. Corley, N.M. Bîrlea, F. Quondamatteo, G. ÓLaighin, Physiol. Meas. 35, 231–252 (2014)CrossRefGoogle Scholar
  5. P. Bogonez-Franco, L. Nescolarde, E. McAdams, J. Rosell-Ferrer, Physiol. Meas. 36, 85–106 (2015)CrossRefGoogle Scholar
  6. M. Boone, S. Norrenberg, G. Jemec, V. Del Marmol, Arch. Dermatol. Res. 305, 283–297 (2013)CrossRefGoogle Scholar
  7. E. Caffarel-Salvador, A.J. Brady, E. Eltayib, T. Meng, A. Alonso-Vicente, P. Gonzalez-Vazquez, B.M. Torrisi, E.M. Vicente-Perez, K. Mooney, D.S. Jones, S.E.J. Bell, C.P. McCoy, H.O. McCarthy, J.C. McElnay, R.F. Donnelly, PLoS One 10, e0145644 (2015)CrossRefGoogle Scholar
  8. S.P. Davis, W. Martanto, M.G. Allen, M.R. Prausnitz, IEEE Trans. Biomed. Eng. 52, 909–915 (2005)CrossRefGoogle Scholar
  9. A. De Lorenzo, A. Andreoli, J. Matthie, P. Withers, J. Appl. Physiol. 82, 1542–1558 (1997)Google Scholar
  10. R.F. Donnelly, T.R.R. Singh, M.J. Garland, K. Migalska, R. Majithiya, C.M. McCrudden, P.L. Kole, T.M.T. Mahmood, H.O. McCarthy, A.D. Woolfson, Adv. Funct. Mater. 22, 4879–4890 (2012)CrossRefGoogle Scholar
  11. K.F. Feingold, D. Denda, Clin. Dermatol. 30, 263–268 (2012)CrossRefGoogle Scholar
  12. L.H. Grecco, S. Li, S. Michel, L. Castillo-Saavedra, A. Mourdoukoutas, M. Bikson, F. Fregni, J. Neuro-Oncol. 3, 73–82 (2015)Google Scholar
  13. K. Hashimoto, J. Invest. Dermatol. 57, 17–31 (1971)CrossRefGoogle Scholar
  14. L. Humrez, M. Ramos, A. Al-Jumaily, M. Petchu, J. Ingram, J. Polym. Res. 18, 1043–1052 (2011)CrossRefGoogle Scholar
  15. J. Ji, F.E.H. Tay, J. Miao, C. Iliescu, J. Micromech. Microeng. 16, 958–964 (2006)CrossRefGoogle Scholar
  16. H. Kataoka, Clin. Cardiol. 36, 555–559 (2013)CrossRefGoogle Scholar
  17. L. Liu, H. Kai, K. Nagamine, Y. Ogawa, M. Nishizawa, RSC Adv. 6, 48630–48635 (2016)CrossRefGoogle Scholar
  18. S. MacNeil, Nature 445, 874–880 (2007)CrossRefGoogle Scholar
  19. A. McConville, J. Davis, Electrochem. Commun. 72, 162–165 (2016)CrossRefGoogle Scholar
  20. N. Meziane, J.G. Webster, M. Attari, A.J. Nimunkar, Physiol. Meas. 34, R47–R69 (2013)CrossRefGoogle Scholar
  21. M.S. Mialich, J.M.F. Sicchieri, A.A.J. Junior, Int. J. Clin. Nutr. 2, 1–10 (2014)Google Scholar
  22. P.R. Miller, X. Xiao, I. Brener, D.B. Burckel, R. Narayan, R. Polsky, Adv. Healthcare Mater. 3, 876–881 (2014)CrossRefGoogle Scholar
  23. P.R. Miller, R.J. Narayan, R. Polsky, J. Mater. Chem. B 4, 1379–1383 (2016)CrossRefGoogle Scholar
  24. E.V. Mukerjee, S.D. Collins, R.R. Isseroff, R.L. Smith, Sens. Actuators, A 114, 267–275 (2004)CrossRefGoogle Scholar
  25. O. Olatunji, D.B. Das, M.J. Garland, L. Belaid, R.F. Donnelly, J. Pharm. Sci. 102, 1209–1221 (2013)CrossRefGoogle Scholar
  26. J.H. Park, S.O. Choi, R. Kamath, Y.K. Yoon, M.G. Allen, M.R. Prausnitz, Biomed. Microdevices 9, 223–234 (2006)CrossRefGoogle Scholar
  27. T. Schwarts, J. Clin. Invest. 106, 9–10 (2000)CrossRefGoogle Scholar
  28. O.A. Shergold, N.A. Fleck, Proc. R. Soc. Lond. 460, 3037–3058 (2004)CrossRefGoogle Scholar
  29. M. Shirkhanzadeh, J. Mater. Sci. Mater. Med. 16, 37–45 (2005)CrossRefGoogle Scholar
  30. L. Ventrelli, L. Marsilio, G. Strambini, Barillaro, Adv. Healthcare Mater. 4, 2606–2640 (2015)CrossRefGoogle Scholar
  31. M. Verhoeven, S. Bystrova, L. Winnubst, H. Qureshi, T.D. de Gruijl, R.J. Scheper, R. Luttge, Microelectron. Eng. 98, 659–662 (2012)CrossRefGoogle Scholar
  32. H.C. Wang, A.R. Lee, J. Food Drug Anal. 23, 191 (2015)CrossRefGoogle Scholar
  33. J.R. Windmiller, G. Valdés-Ramírez, N. Zhou, M. Zhou, P.R. Miller, C. Jin, S.M. Brozik, R. Polsky, E. Katz, R. Narayan, J. Wang, Electroanalysis 23, 2302–2309 (2011)CrossRefGoogle Scholar
  34. T.W. Wong, J. Control. Release 193, 257–269 (2014)CrossRefGoogle Scholar
  35. F. Zhu, M.K. Kuhlmann, P. Kotanko, E. Seibert, E.F. Leonard, N.W. Levin, Physiol. Meas. 29, S503–S516 (2008)CrossRefGoogle Scholar
  36. F. Zhu, P. Kotanko, G.J. Handelman, J.G. Raimann, L. Liu, M. Carter, M.K. Kuhlmann, E. Seibert, E.F. Leonard, N.W. Levin, Physiol. Meas. 32, 887–902 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Finemechanics, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Nihon Kohden Co., Ltd.TokyoJapan

Personalised recommendations