Skip to main content
Log in

Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Bubbles are an intrinsic problem in microfluidic devices and they can appear during the initial filling of the device or during operation. This report presents a generalizable technique to extract bubbles from microfluidic networks using an adjacent microfluidic negative pressure network over the entire microfluidic channel network design. We implement this technique by superimposing a network of parallel microchannels with a vacuum microfluidic channel and characterize the bubble extraction rates as a function of negative pressure applied. In addition, we generate negative pressure via a converging-diverging (CD) nozzle, which only requires inlet gas pressure to operate. Air bubbles generated during the initial liquid filling of the microfluidic network are removed within seconds and their volume extraction rate is calculated. This miniaturized vacuum source can achieve a vacuum pressure of 7.23 psi which corresponds to a bubble extraction rate of 9.84 pL/s, in the microfluidic channels we characterized. Finally, as proof of concept it is shown that the bubble removal system enables bubble removal on difficult to fill microfluidic channels such as circular or triangular shaped channels. This method can be easily integrated into many microfluidic experimental protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • D. Cheng, H. Jiang, Appl. Phys. Lett. 95, 214103 (2009)

    Article  Google Scholar 

  • H.B. Cheng, Y.W. Lu, in 2013 Transducers Eurosensors XXVII 17th Int. Conf. Solid-State Sens. Actuators Microsyst. TRANSDUCERS EUROSENSORS XXVII (2013), pp. 1290–1293

  • T. Christoforidis, E.M. Werner, E.E. Hui, D.T. Eddington, Biomed. Microdevices 18, 74 (2016)

    Article  Google Scholar 

  • L. Clime, D. Brassard, J.P. Pezacki, T. Veres, Microfluid. Nanofluid. 12, 371 (2011)

    Article  Google Scholar 

  • D. T. Eddington, Chips tips (2006)

    Google Scholar 

  • D.T. Eddington, J.P. Puccinelli, D.J. Beebe, Sens. Actuators B Chem. 114, 170 (2006)

    Article  Google Scholar 

  • F. Goldschmidtboing, R. Schlosser, S. Schonhardt, P. Woias, in TRANSDUCERS Solid-State Sens. Actuators Microsyst. 12th Int. Conf. 2003, vol. 2 (2003), pp. 1883–1886

  • H. Gong, N. Ramalingam, L. Chen, J. Che, Q. Wang, Y. Wang, X. Yang, P.H.E. Yap, C.H. Neo, Biomed. Microdevices 8, 167 (2006)

  • F. He, Y. Wang, S. Jin, S.R. Nugen, Sensors & Transducers 13, 150 (2011)

  • K.E. Herold, A. Rasooly, Lab on a Chip Technology: Fabrication and Microfluidics (horizon scientific press, 2009)

  • K. Hosokawa, K. Sato, N. Ichikawa, M. Maeda, Lab Chip 4, 181 (2004)

    Article  Google Scholar 

  • E. Hrncír, J. Rosina, Physiol. Res. Acad. Sci. Bohemoslov. 46, 319 (1997)

    Google Scholar 

  • C.-H. Hsieh, C.-J.C. Huang, Y.-Y. Huang, Biomed. Microdevices 12, 897 (2010)

    Article  Google Scholar 

  • M. Johnson, G. Liddiard, M. Eddings, B. Gale, in (2008), pp. 1006–1008

  • J.H. Kang, Y.C. Kim, J.-K. Park, Lab Chip 8, 176 (2008)

    Article  Google Scholar 

  • E. Kang, D.H. Lee, C.-B. Kim, S.J. Yoo, S.-H. Lee, J. Micromech. Microeng. 20, 45009 (2010)

    Article  Google Scholar 

  • J.M. Karlsson, M. Gazin, S. Laakso, T. Haraldsson, S. Malhotra-Kumar, M. Mäki, H. Goossens, W. van der Wijngaart, Lab Chip 13, 4366 (2013)

    Article  Google Scholar 

  • J. Kohnle, G. Waibel, R. Cernosa, M. Storz, H. Ernst, H. Sandmaier, T. Strobelt, R. Zengerle, in Fifteenth IEEE Int. Conf. Micro Electro Mech. Syst. 2002 (2002), pp. 77–80

  • C. Liu, J.A. Thompson, H.H. Bau, Lab Chip 11, 1688 (2011)

    Article  Google Scholar 

  • R.H. Liu, J. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, Anal. Chem. 76, 1824 (2004)

    Article  Google Scholar 

  • C. Lochovsky, S. Yasotharan, A. Günther, Lab Chip 12, 595 (2012)

    Article  Google Scholar 

  • C. Luo, X. Zhu, T. Yu, X. Luo, Q. Ouyang, H. Ji, Y. Chen, Biotechnol. Bioeng. 101, 190 (2008)

    Article  Google Scholar 

  • P. F. Man, C. H. Mastrangelo, M. A. Burns, D. T. Burke, in Elev. Annu. Int. Workshop Micro Electro Mech. Syst. 1998 MEMS 98 Proc. (1998), pp. 45–50

  • D.D. Meng, J. Kim, C.-J. Kim, J. Micromech. Microeng. 16, 419 (2006)

    Article  Google Scholar 

  • H.-C. Moeller, M.K. Mian, S. Shrivastava, B.G. Chung, A. Khademhosseini, Biomaterials 29, 752 (2008)

    Article  Google Scholar 

  • J. Monahan, A.A. Gewirth, R.G. Nuzzo, Anal. Chem. 73, 3193 (2001)

    Article  Google Scholar 

  • L. Riegger, M. Grumann, J. Steigert, S. Lutz, C.P. Steinert, C. Mueller, J. Viertel, O. Prucker, J. Rühe, R. Zengerle, J. Ducrée, Biomed. Microdevices 9, 795 (2007)

    Article  Google Scholar 

  • Y.S. Shin, K. Cho, S.H. Lim, S. Chung, S.-J. Park, C. Chung, D.-C. Han, J.K. Chang, J. Micromech. Microeng. 13, 768 (2003)

    Article  Google Scholar 

  • S.K. Sia, G.M. Whitesides, Electrophoresis 24, 3563 (2003)

    Article  Google Scholar 

  • A.M. Skelley, J. Voldman, Lab Chip 8, 1733 (2008)

    Article  Google Scholar 

  • Q. Song, Y. Gao, Q. Zhu, Q. Tian, B. Yu, B. Song, Y. Xu, M. Yuan, C. Ma, W. Jin, T. Zhang, Y. Mu, Q. Jin, Biomed. Microdevices 17, 1 (2015)

    Article  Google Scholar 

  • N. Spengler, R.C. Meier, A. Moazenzadeh, V. Badilita, J.G. Korvink, U. Wallrabe, in 2013 Transducers Eurosensors XXVII 17th Int. Conf. Solid-State Sens. Actuators Microsyst. TRANSDUCERS EUROSENSORS XXVII (2013), pp. 2118–2121

  • C.P. Steinert, H. Sandmaier, M. Daub, B. de Heij, R. Zengerle, in Micro Electro Mech. Syst. 2004 17th IEEE Int. Conf. MEMS (2004), pp. 224–228

  • J.H. Sung, M.L. Shuler, Biomed. Microdevices 11, 731 (2009)

    Article  Google Scholar 

  • C.K. Tan, M.J. Davies, D.K. McCluskey, I.R. Munro, M.C. Nweke, M.C. Tracey, N. Szita, J. Chem. Technol. Biotechnol. 90, 1927 (2015)

    Article  Google Scholar 

  • W.-C. Tian, E. Finehout, Microfluidics for Biological Applications (Springer Science & Business Media, 2009)

  • N.B. Trung, M. Saito, H. Takabayashi, P.H. Viet, E. Tamiya, Y. Takamura, Sensors Actuators B Chem. 149, 284 (2010)

    Article  Google Scholar 

  • M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)

    Article  Google Scholar 

  • H. van Lintel, G. Mernier, P. Renaud, Micromachines 3, 218 (2012)

    Article  Google Scholar 

  • P. Vulto, G. Dame, U. Maier, S. Makohliso, S. Podszun, P. Zahn, G.A. Urban, Lab Chip 10, 610 (2010)

    Article  Google Scholar 

  • P. Vulto, G. Medoro, L. Altomare, G.A. Urban, M. Tartagni, R. Guerrieri, N. Manaresi, J. Micromech. Microeng. 16, 1847 (2006)

    Article  Google Scholar 

  • Y. Wang, C.E. Sims, N.L. Allbritton, Lab Chip 12, 3036 (2012)

    Article  Google Scholar 

  • L. Xu, H. Lee, D. Jetta, K.W. Oh, Lab Chip 15, 3962 (2015)

    Article  Google Scholar 

  • J. Xu, R. Vaillant, D. Attinger, Microfluid. Nanofluid. 9, 765 (2010)

    Article  Google Scholar 

  • W. Zheng, Z. Wang, W. Zhang, X. Jiang, Lab Chip 10, 2906 (2010)

    Article  Google Scholar 

  • X. Zhu, Microsyst. Technol. 15, 1459 (2009)

    Article  Google Scholar 

  • Q. Zhu, Y. Gao, B. Yu, H. Ren, L. Qiu, S. Han, W. Jin, Q. Jin, Y. Mu, Lab Chip 12, 4755 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation 1253060, DTE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Eddington.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christoforidis, T., Ng, C. & Eddington, D.T. Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle. Biomed Microdevices 19, 58 (2017). https://doi.org/10.1007/s10544-017-0193-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0193-0

Keywords

Navigation