Skip to main content
Log in

Accelerated life-test methods and results for implantable electronic devices with adhesive encapsulation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We have developed and applied new methods to estimate the functional life of miniature, implantable, wireless electronic devices that rely on non-hermetic, adhesive encapsulants such as epoxy. A comb pattern board with a high density of interdigitated electrodes (IDE) could be used to detect incipient failure from water vapor condensation. Inductive coupling of an RF magnetic field was used to provide DC bias and to detect deterioration of an encapsulated comb pattern. Diodes in the implant converted part of the received energy into DC bias on the comb pattern. The capacitance of the comb pattern forms a resonant circuit with the inductor by which the implant receives power. Any moisture affects both the resonant frequency and the Q-factor of the resonance of the circuitry, which was detected wirelessly by its effects on the coupling between two orthogonal RF coils placed around the device. Various defects were introduced into the comb pattern devices to demonstrate sensitivity to failures and to correlate these signals with visual inspection of failures. Optimized encapsulation procedures were validated in accelerated life tests of both comb patterns and a functional neuromuscular stimulator under development. Strong adhesive bonding between epoxy and electronic circuitry proved to be necessary and sufficient to predict 1 year packaging reliability of 99.97% for the neuromuscular stimulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • G. Bierwagen, D. Tallman, J. Li, L. He, C. Jeffcoate, EIS studies of coated metals in accelerated exposure. Prog Org Coat 46(2), 149–158 (2003)

    Article  Google Scholar 

  • K. Birkelund, L. Nørgaard, E.V. Thomsen, Enhanced polymeric encapsulation for MEMS based multi sensors for fisheries research. Sensors Actuators A Phys. 170(1), 196–201 (2011)

    Article  Google Scholar 

  • R.C. Blish, S. Li, H. Kinoshita, S. Morgan, A.F. Myers, Gold–aluminum intermetallic formation kinetics. IEEE Trans. Device Mater. Reliab. 7(1), 51–63 (2007)

    Article  Google Scholar 

  • C. Breach, F. Wulff, New observations on intermetallic compound formation in gold ball bonds: General growth patterns and identification of two forms of au 4 al. Microelectron. Reliab. 44(6), 973–981 (2004)

    Article  Google Scholar 

  • J. G. Chubbuck, Intracranial pressure monitor, Google Patents (1977)

  • P. Donaldson, Aspects of silicone rubber as an encapsulant for neurological prostheses. Med. Biol. Eng. Comput. 29(1), 34–39 (1991)

    Article  Google Scholar 

  • Escobar, L. A. and W. Q. Meeker. "A review of accelerated test models." Statistical science: 552–577 (2006)

  • H. Gensler, R. Sheybani, P.-Y. Li, R.L. Mann, E. Meng, An implantable MEMS micropump system for drug delivery in small animals. Biomed. Microdevices 14(3), 483–496 (2012)

    Article  Google Scholar 

  • H. Guo, E. Pohl, A. Gerokostopoulos, Determining the right sample size for your test: theory and application. 2013 Annual Reliability and Maintainability Symposium, Available from http://www.reliasoft.com/pubs/2013_RAMS_determining_right_sample_size.pdf. Accessed on 5 June 2014 (2013)

  • C. Hassler, T. Boretius, T. Stieglitz, Polymers for neural implants. J. Polym. Sci. B Polym. Phys. 49(1), 18–33 (2011)

    Article  Google Scholar 

  • D. Hukins, A. Mahomed, S. Kukureka, Accelerated aging for testing polymeric biomaterials and medical devices. Med. Eng. Phys. 30(10), 1270–1274 (2008)

    Article  Google Scholar 

  • S. Kim, R. Bhandari, M. Klein, S. Negi, L. Rieth, P. Tathireddy, M. Toepper, H. Oppermann, F. Solzbacher, Integrated wireless neural interface based on the Utah electrode array. Biomed. Microdevices 11(2), 453–466 (2009)

    Article  Google Scholar 

  • A. Koulaouzidis, D.K. Iakovidis, A. Karargyris, E. Rondonotti, Wireless endoscopy in 2020: Will it still be a capsule? World J. Gastroenterol. 21(17), 5119–5130 (2015)

    Article  Google Scholar 

  • G.E. Loeb, R.A. Peck, W.H. Moore, K. Hood, BION™ system for distributed neural prosthetic interfaces. Med. Eng. Phys. 23(1), 9–18 (2001)

    Article  Google Scholar 

  • A.C. Loos, G.S. Springer, Curing of epoxy matrix composites. J. Compos. Mater. 17(2), 135–169 (1983)

    Article  Google Scholar 

  • S. Minnikanti, G. Diao, J.J. Pancrazio, X. Xie, L. Rieth, F. Solzbacher, N. Peixoto, Lifetime assessment of atomic-layer-deposited Al2O3–Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization. Acta Biomater. 10(2), 960–967 (2014)

    Article  Google Scholar 

  • W. Nelson, Accelerated life testing-step-stress models and data analyses. IEEE Trans. Reliab. 29(2), 103–108 (1980)

    Article  MATH  Google Scholar 

  • K.G. Ong, C.A. Grimes, A resonant printed-circuit sensor for remote query monitoring of environmental parameters. Smart Mater. Struct. 9(4), 421 (2000)

    Article  Google Scholar 

  • T. Stieglitz, Manufacturing, assembling and packaging of miniaturized neural implants. Microsyst. Technol. 16(5), 723–734 (2010)

    Article  Google Scholar 

  • A. Vanhoestenberghe, N. Donaldson, Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices. J. Neural Eng. 10(3), 031002 (2013)

    Article  Google Scholar 

  • A.N. Vest, L. Zhou, X. Huang, V. Norekyan, Y. Bar-Cohen, R.H. Chmait, G.E. Loeb, Design and testing of a transcutaneous RF recharging system for a fetal Micropacemaker. IEEE Trans Biomed Circuits Syst 11(2), 336–346 (2016)

  • P. Wang, S. Lachhman, D. Sun, S. Majerus, M.S. Damaser, C.A. Zorman, P.-L. Feng, W. Ko, Non-hermetic micropackage for chronic implantable systems (International Symposium on Microelectronics, International Microelectronics Assembly and Packaging Society, 2013)

    Google Scholar 

  • X. Xie, L. Rieth, R. Caldwell, S. Negi, R. Bhandari, R. Sharma, P. Tathireddy, F. Solzbacher, Effect of bias voltage and temperature on lifetime of wireless neural interfaces with Al2O3 and parylene bilayer encapsulation. Biomed. Microdevices 17(1), 1–8 (2015)

    Article  Google Scholar 

  • H. Xu, C. Liu, V.V. Silberschmidt, S. Pramana, T.J. White, Z. Chen, M. Sivakumar, V. Acoff, A micromechanism study of thermosonic gold wire bonding on aluminum pad. J. Appl. Phys. 108(11), 113517 (2010)

    Article  Google Scholar 

  • X. Huang, K. Zheng, S. Kohan, M. Denprasert, L. Liao, G.E. Loeb, Neurostimulation strategy for stress urinary incontinence (Transactions on Neural Systems and Rehabilitation Engineering, IEEE, 2017)

    Google Scholar 

  • B. Yacobi, S. Martin, K. Davis, A. Hudson, M. Hubert, Adhesive bonding in microelectronics and photonics. J. Appl. Phys. 91(10), 6227–6262 (2002)

    Article  Google Scholar 

  • L. Zhou, A.N. Vest, R.A. Peck, J.P. Sredl, X. Huang, Y. Bar-Cohen, M.J. Silka, J.D. Pruetz, R.H. Chmait, G.E. Loeb, Minimally invasive implantable fetal micropacemaker: Mechanical testing and technical refinements. Med Biol Eng Comput 54(12), 1819–1830 (2016)

Download references

Acknowledgements

The authors would like to thank engineers Ray Peck, Sisi Shi, and Longpeng Jiao for help in design and manufacturing. The project is funded by General Stim Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Denprasert, P.M., Zhou, L. et al. Accelerated life-test methods and results for implantable electronic devices with adhesive encapsulation. Biomed Microdevices 19, 46 (2017). https://doi.org/10.1007/s10544-017-0189-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0189-9

Keywords

Navigation