Skip to main content
Log in

Fabrication of cyclo olefin polymer microfluidic devices for trapping and culturing of yeast cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A microfluidic platform is designed and fabricated to investigate the role of uncharacterized YOR060C (Sld7) protein in aging in yeast cells for the first time. Saccharomyces cerevisiae yeast cells are trapped in the series of C-shaped regions (0.5 nL) of COP (cyclo olefin polymer), PMMA (poly methylmethacrylate), or PS (polystyrene) microbioreactors. The devices are fabricated using hot embossing and thermo-compression bonding methods. Photolithography and electrochemical etching are used to form the steel mold needed for hot embossing. The cell cycle processes are investigated by monitoring green fluorescent protein (GFP) tagged Sld7 expressions under normal as well as calorie restricted conditions. The cells are loaded at 1 μL/min flowrate and trapped successfully within each chamber. The medium is continuously fed at 0.1 μL/min throughout the experiments. Fluorescent signals of the low abundant Sld7 proteins could be distinguished only on COP devices. The background fluorescence of COP is found 1.22 and 7.24 times lower than that of PMMA, and PS, respectively. Hence, experiments are continued with COP, and lasted for more than 40 h without any contamination. The doubling time of the yeast cells are found as 72 min and 150 min, and the growth rates as 9.63 × 10−3 min−1 and 4.62 × 10−3 min−1, in 2% glucose containing YPD and YNB medium, respectively. The product concentration (Sld7p:GFP) increased in accordance with cell growth. The dual role of Sld7 protein in both cell cycle and chronological aging needs to be further investigated following the preliminary experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • H. Araki, Genes Genet. Syst. 86, 141 (2011)

    Article  Google Scholar 

  • J.L. Barger, T. Kayo, J.M. Vann, E.B. Arias, J. Wang, T.A. Hacker, Y. Wang, D. Raederstorff, J.D. Morrow, C. Leeuwenburgh, D.B. Allison, K.W. Saupe, G.D. Cartee, R. Weindruch, T.A. Prolla, PLoS One 3, e2264 (2008)

    Article  Google Scholar 

  • H. Becker, C. Gärtner, Anal. Bioanal. Chem. 390, 89 (2008)

    Article  Google Scholar 

  • A. Bhattacharyya, C.M. Klapperich, Anal. Chem. 78, 788 (2006)

    Article  Google Scholar 

  • J.Y. Chen, Y.T. Huang, H.H. Chou, C.P. Wang, C.F. Chen, Lab Chip 15, 4533 (2015)

    Article  Google Scholar 

  • S.H. Choi, D.S. Kim, T.H. Kwon, Microsyst. Techol. 15, 309 (2009)

    Article  Google Scholar 

  • M.M. Crane, I.B.N. Clark, E. Bakker, S. Smith, P.S. Swain, PLoS One 9, e100042 (2014)

    Article  Google Scholar 

  • E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, M. Goksör, J. Opt. A Pure Appl. Opt. 9, S113 (2007)

    Article  Google Scholar 

  • D. Falconnet, A. Niemistö, R.J. Taylor, M. Ricicova, T. Galitski, I. Shmulevich, C.L. Hansen, Lab Chip 11, 466 (2011)

    Article  Google Scholar 

  • I.A. Fatile, J. Chem. Tech. Biotechnol. 35B, 94 (1985)

    Article  Google Scholar 

  • M.S. Ferry, I.A. Razinkov, J. Hasty, Methods Enzymol. 497, 295 (2011)

    Article  Google Scholar 

  • O. Frey, F. Rudolf, A. Hierlemann, μTAS 1, 1582 (2012)

    Google Scholar 

  • Y.D. Gokdel, S. Mutlu, A.D. Yalcinkaya, J. Micromech. Microeng. 20, 95009 (2010)

    Article  Google Scholar 

  • A. Groisman, C. Lobo, H. Cho, J.K. Campbell, Y.S. Dufour, A.M. Stevens, A. Levchenko, Nat. Methods 2, 685 (2005)

    Article  Google Scholar 

  • M. Grumann, J. Steigert, L. Riegger, I. Moser, B. Enderle, K. Riebeseel, G. Urban, R. Zengerle, J. Ducree, Biomed. Microdevices 8(3), 209 (2006)

    Article  Google Scholar 

  • A.S. Hansen, N. Hao, E.K. O’Shea, Nat. Protoc. 10, 1181 (2015)

    Article  Google Scholar 

  • R.W. Hart, A. Turturro, Environ. Health Perspect. 105, 989 (1997)

    Article  Google Scholar 

  • E. Iseri, K.O. Ulgen, C. Yilmaz, S. Mutlu, MEMS 2016, 493 (2016)

    Google Scholar 

  • H. Itou, Y. Shirakihara, H. Araki, Acta Crystallogr. D Biol. Crystallogr. 71, 1649 (2015)

    Article  Google Scholar 

  • J.S. Jeon, S. Chung, R.D. Kamm, J.L. Charest, Biomed. Microdevices 13, 325 (2011)

    Article  Google Scholar 

  • S. Laib, B.D. MacCraith, Anal. Chem. 79(16), 6264 (2007)

    Article  Google Scholar 

  • J.N. Lee, C. Park, G.M. Whitesides, Anal. Chem. 75, 6544 (2003)

    Article  Google Scholar 

  • P.J. Lee, N.C. Helman, W.A. Lim, P.J. Hung, BioTechniques 44, 91 (2008)

    Article  Google Scholar 

  • O.V. Leontieva, M.V. Blagosklonny, Aging 3, 1078 (2011)

    Article  Google Scholar 

  • C. Luo, L. Jiang, S. Liang, Q. Ouyang, H. Ji, Y. Chen, Biomed. Microdevices 11, 981 (2009)

    Article  Google Scholar 

  • M.C. Morant-Minana, J. Elizalde, Biosens. Bioelectron. 70, 491 (2015)

    Article  Google Scholar 

  • H. Nagai, Y. Fuchiwaki, Electron. Commun. Jpn. 98, 510 (2015)

    Article  Google Scholar 

  • M. Nevitt, Microfluidics, BioMEMS, and Medical Microsystems XI. 8615, 86150F (2013)

  • P.S. Nunes, P.D. Ohlsson, O. Ordeig, J.P. Kutter, Microfluid. Nanofluid. 9, 145 (2010)

    Article  Google Scholar 

  • J.W. Park, S.C. Na, T.Q. Nguyen, S. Paik, M. Kang, D. Hong, I.S. Choi, J. Lee, N.L. Jeon, Biotechn. Bioeng 112, 494 (2015)

    Article  Google Scholar 

  • J. Ryley, O.M. Pereira-Smith, Yeast 23, 1065 (2006)

    Article  Google Scholar 

  • D.A. Sequea, N. Sharma, E.B. Arias, G.D. Cartee, J. Gerontol. A Biol. Sci. Med. Sci. 67, 1279 (2012)

    Article  Google Scholar 

  • S.K. Sia, G.M. Whitesides, Electrophoresis 24, 3563 (2003)

    Article  Google Scholar 

  • H. Tachibana, M. Saito, S. Shibuya, K. Tsuji, N. Miyagawa, K. Yamanaka, E. Tamiya, Biosens. Bioelectron. 74, 725 (2015)

    Article  Google Scholar 

  • E.B. Tahara, F.M. Cunha, T.O. Basso, B.E. Della Bianca, A.K. Gombert, A.J. Kowaltowski, PLoS One 8, e56388 (2013)

    Article  Google Scholar 

  • T. Tanaka, T. Umemori, S. Endo, S. Muramatsu, M. Kanemaki, Y. Kamimura, C. Obuse, H. Araki, EMBO J. 30, 2019 (2011a)

    Article  Google Scholar 

  • S. Tanaka, R. Nakato, Y. Kaou, K. Shirahige, H. Araki, Curr. Biol. 21, 2055 (2011b)

    Article  Google Scholar 

  • H.H. Tran, W. Wu, N.Y. Lee, Sens. Actuator B: Chem. 181, 955 (2013)

    Article  Google Scholar 

  • H. van Lintel, G. Mernier, P. Renaud, Micromachines. 3, 218 (2012)

    Article  Google Scholar 

  • P.M. van Midwoud, A. Janse, M.T. Merema, G.M.M. Groothuis, E. Verpoorte, Anal. Chem. 84, 3938 (2012)

    Article  Google Scholar 

  • C. De Virgilio, R. Loewith, Int. J. Biochem. Cell Biol. 38, 1476 (2006)

  • G.M. Whitesides, Nature 442, 368 (2006)

    Article  Google Scholar 

  • M.A. Witek, S. Wei, B. Vaidya, A.A. Adams, L. Zhu, W. Stryjewski, R.L. McCarley, S.A. Soper, Lab Chip 4, 464 (2004)

    Article  Google Scholar 

  • M. Wu, Surf. Interface Anal. 41, 11 (2009)

    Article  Google Scholar 

  • Z. Xie, Y. Zhang, K. Zou, O. Brandman, C. Luo, Q. Ouyang, H. Li, Aging Cell 11, 599 (2012)

    Article  Google Scholar 

  • L.Y. Yeo, H. Chang, P.P.Y. Chan, J.R. Friend, Small 7, 12 (2011)

    Article  Google Scholar 

  • L. Yi, W. Xiaodong, Y. Fan, J. Mater. Process. Technol. 208, 63 (2008)

    Article  Google Scholar 

  • E.B. Yucel, S. Eraslan, K.O. Ulgen, FEBS J. 281, 1281 (2014)

    Article  Google Scholar 

  • E.B. Yucel, S. Eraslan, K.O. Ulgen, Appl. Microbiol. Biotechnol. 99, 6775 (2015)

    Article  Google Scholar 

  • Y. Zhang, C. Luo, K. Zou, Z. Xie, PLoS One 7, e48275 (2012)

    Article  Google Scholar 

  • H. Zhang, X. Liu, L. Tian, X. Han, Micromachines. 5, 1416 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of Boğaziçi University Research Fund through project R9701 and The Scientific and Technological Research Council of Turkey (TUBITAK) through 2210C Priority Areas Scholarship Program for Graduate Study were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kutlu O. Ulgen.

Ethics declarations

Funding

This study was funded by R9701 and 2210C.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puza, S., Gencturk, E., Odabasi, I.E. et al. Fabrication of cyclo olefin polymer microfluidic devices for trapping and culturing of yeast cells. Biomed Microdevices 19, 40 (2017). https://doi.org/10.1007/s10544-017-0182-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0182-3

Keywords

Navigation