Skip to main content
Log in

Impact of surface roughness on Dielectrophoretically assisted concentration of microorganisms over PCB based platforms

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This article presents a PCB based microfluidic platform for performing a dielectrophoretic capture of live microorganisms over inter-digitated electrodes buried under layers of different surface roughness values. Although dielectrophoresis has been extensively studied earlier over silicon and polymer surfaces with printed electrodes the issue of surface roughness particularly in case of buried electrodes has been seldom investigated. We have addressed this issue through a layer of spin coated PDMS (of various surface roughness) that is used to cover the printed electrodes over a printed circuit board. The roughness in the PDMS layer is generally defined by the roughness of the FR4 base which houses the printed electrodes as well as other structures. Possibilities arising out of COMSOL simulations have been well validated experimentally in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • W. Bai, K.S. Zhao, K. Asami, Biophys. Chem. 122, 136–142 (2006)

    Article  Google Scholar 

  • D.J. Bakewell, H. Morgan, IEEE Trans. Nanobiosci. 5(1), 1–8 (2006)

    Article  Google Scholar 

  • H. Chang, C.H. Chen, I.F. Cheng, C.C. Lin, Proceedings of the 2nd IEEE international conference on Nano/micro engineered and molecular systems, 1175–1178 (2007)

  • C.F. Chou, J.O. Tegenfeldt, O. Bakajin, S.S. Chan, E.C. Cox, N. Darnton, R.H. Austin, Biophys. J. 83(4), 2170–2179 (2002)

    Article  Google Scholar 

  • M. Collet, S. Salomon, N.Y. Klein, F. Seichepine, C. Vieu, L. Nicu, G. Larrieu, Adv. Mater. 27(7), 1268–1273 (2015)

    Article  Google Scholar 

  • E.M. Freer, O. Grachev, X. Duan, S. Martin, D.P. Stumbo, Nat. Nanotechnol. 5(7), 525–530 (2010)

    Article  Google Scholar 

  • A. Ghubade, S. Mandal, R. Chaudhury, R.K. Singh, S. Bhattacharya, Biomed. Microdevices 11(5), 987–995 (2009)

    Article  Google Scholar 

  • B.G. Hawkins, A.E. Smith, Y.A. Syed, B.J. Kirby, Anal. Chem. 79(19), 7291–7300 (2007)

    Article  Google Scholar 

  • D. Ivnitski, I. Abdel-Hamid, P. Atanasov, 12(5), 317–325 (2000), doi:10.1002/(SICI)1521-4109(20000301)12:53.0.CO;2-A

  • T.B. Jones, Adv. Powder Technol. 89 (1996)

  • H. Kasahara, Z. Ding, M. Nakano, J. Suehiro, Proceedings of the IEEE international conference on industrial technology, 3341–3346 (2015)

  • Y.H. Lin, G.B. Lee, Biosens. Bioelectron. 24(4), 572–578 (2008)

    Article  Google Scholar 

  • A. Manuscript, P.D. Instruments, NIH Public Access. 92(1), 22–42 (2009)

    Google Scholar 

  • J. Mark, Polymer Data Handbook (Oxford Univ. Press, New York, 1999)

    Google Scholar 

  • E. Martinez-Salas, J.A. Martin, M. Vicente, J. Bacteriol. 147(1), 97–100 (1981)

    Google Scholar 

  • J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides, Electrophoresis 21, 27–40 (2000)

    Article  Google Scholar 

  • L.J. Millet, K. Park, N.N. Watkins, K.J. Hsia, R. Bashir. JOVE J. Vis. Exp. (48), e2545 (2011)

  • M. Nayak, D. Singh, H. Singh, R. Kant, A. Gupta, S.S. Pandey, S. Mandal, G. Ramanathan, S. Bhattacharya, Sci. Rep. 3, 3266 (2013)

    Article  Google Scholar 

  • V. Nerguizian, A. Alazzam, D. Roman, I. Stiharu, M. Burnier, Electrophoresis 33(3), 426–435 (2012)

    Article  Google Scholar 

  • N.T. Nguyen, X. Huang, Sens. Actuators A: Phys. 88(2), 104–111 (2001)

    Article  Google Scholar 

  • K. Park, H.J. Suk, D. Akin, R. Bashir, Lab Chip 9(15), 2224–2229 (2009)

    Article  Google Scholar 

  • H.A. Pohl, J. Appl. Phys. 22(7), 869–871 (1951)

    Article  Google Scholar 

  • M.A. Saucedo-Espinosa, A. Lalonde, A. Gencoglu, M.F. Romero-Creel, J.R. Dolas, B.H. Lapizco-Encinas, Electrophoresis 37(2), 282–290 (2016)

    Article  Google Scholar 

  • A. Sonnenberg, J.Y. Marciniak, R. Krishnan, M.J. Heller, Electrophoresis 33(16), 2482–2490 (2012)

    Article  Google Scholar 

  • X.L. Su, Y. Li, Biosens. Bioelectron. 19(6), 563–574 (2004)

    Article  Google Scholar 

  • S. Tuukkanen, J.J. Toppari, A. Kuzyk, L. Hirviniemi, V.P. Hytönen, T. Ihalainen, P. Törma, Nano Lett. 6(7), 1339–1343 (2006)

    Article  Google Scholar 

  • J. Voldman, M.L. Gray, M. Toner, M.A. Schmidt, Anal. Chem. 74(16), 3984–3990 (2002)

    Article  Google Scholar 

  • C. Wang, K. Lan, M. Chen, M. Wang, L. Jang, Biosens. Bioelectron. 49, 297–304 (2013)

    Article  Google Scholar 

  • H. Wu, Y. Huang, H. Lee, W. Tsai, Biomed. Microdevices 2–6 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, G., Kant, R., Mishra, K. et al. Impact of surface roughness on Dielectrophoretically assisted concentration of microorganisms over PCB based platforms. Biomed Microdevices 19, 28 (2017). https://doi.org/10.1007/s10544-017-0172-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0172-5

Keywords

Navigation