Skip to main content

Advertisement

Log in

Microfluidic processing of synovial fluid for cytological analysis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Cytological analysis of synovial fluid is widely used in the clinic to assess joint health and disease. However, in general practice, only the total number of white blood cells (WBCs) are available for cytologic evaluation of the joint. Moreover, sufficient volume of synovial aspirates is critical to run conventional analyses, despite limited volume of aspiration that can normally be obtained from a joint. Therefore, there is a lack of consistent and standardized synovial fluid cytological tests in the clinic. To address these shortcomings, we developed a microfluidic platform (Synovial Chip), for the first time in the literature, to achieve repeatable, cost- and time-efficient, and standardized synovial fluid cytological analysis based on specific cell surface markers. Microfluidic channels functionalized with antibodies against specific cell surface antigens are connected in series to capture WBC subpopulations, including CD4+, CD8+, and CD66b+ cells, simultaneously from miniscule volumes (100 μL) of synovial fluid aspirates. Cell capture specificity was evaluated by fluorescent labeling of isolated cells in microchannels and was around 90% for all three WBC subpopulations. Furthermore, we investigated the effect of synovial fluid viscosity on capture efficiency in the microfluidic channels and utilized hyaluronidase enzyme treatment to reduce viscosity and to improve cell capture efficiency (>60%) from synovial fluid samples. Synovial Chip allows efficient and standardized point-of-care isolation and analysis of WBC subpopulations in miniscule volumes of patient synovial fluid samples in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Y. Alapan, J.A. Little, et al., Sci. Rep. 4 (2014)

  • Y. Alapan, M.N. Hasan, et al., J. Nanotechnol. Eng. Med. 6(2) (2015a)

  • Y. Alapan, K. Icoz, et al., Biotechnol. Adv. 33(8) (2015b)

  • Y. Alapan, Y. Matsuyama, et al., Technology 04(02) (2016a)

  • Y. Alapan, A. Fraiwan, et al., Expert Rev Med Devices 13(12) (2016b)

  • Y. Alapan, C. Kim, et al., Transl. Res. J. Lab. Clin. Med. 173 (2016c)

  • T. Bonanzinga, A. Zahar, et al., Clin. Orthop. Relat. Res. 475(2) (2017)

  • S.R. Brannan, D.A. Jerrard, J. Emerg. Med. 30(3) (2006)

  • S. Chaurasia, A.K. Shasany, et al., Clin. Exp. Immunol. 185(2) (2016)

  • X. Cheng, D. Irimia, et al., Lab Chip 7(2) (2007)

  • C. Costa, M. Abal, et al., Sensors (Basel) 14(3) (2014)

  • J. Denton, Diagn Histopathol 18(4) (2012)

  • M. Dougados, Baillieres Clin. Rheumatol. 10(3) (1996)

  • W. Fan, W. Wang, et al., Biomark. Med 11(2) (2017)

  • A.J. Freemont, Ann. Rheum. Dis. 50(2) (1991)

  • A.J. Freemont, J. Denton, et al., Ann. Rheum. Dis. 50(2) (1991)

  • A. J. C. Gheiti, K. J. Mulhall, Peri-Prosthetic Joint Infection: Prevention, Diagnosis and Management, Arthroplasty-Update, Prof. Plamen Kinov (Ed.), InTech, (2013). doi:10.5772/53247

  • U.A. Gurkan, T. Anand, et al., Lab Chip 11(23) (2011a)

  • U.A. Gurkan, S. Moon, et al., Biotechnol. J. 6(2) (2011b)

  • M. Honig, H.H. Peter, et al., J. Leukoc. Biol. 66(3) (1999)

  • M.R. Hussein, N.A. Fathi, et al., Pathol. Oncol. Res.: POR 14(3) (2008)

  • M. Kim, Y. Alapan, et al., Blood 128(22) (2016)

  • S.M. Kurtz, E. Lau, et al., J. Arthroplast. 27(8) (2012)

  • S.M. Kurtz, K.L. Ong, et al., J. Bone Joint Surg. Am. 96(8) (2014)

  • A. Kuryliszyn-Moskal, Clin. Rheumatol. 14(1) (1995)

  • W. Li, Y. Gao, et al., Biomed. Microdevices 17(6) (2015)

  • A.L. Lima, P.R. Oliveira, et al., Interdiscip. Perspect. Infect. Dis. 2013 (2013)

  • S. Moon, H.O. Keles, et al., Biosens. Bioelectron. 24(11) (2009)

  • S. Moon, U.A. Gurkan, et al., PLoS One 6, 7 (2011)

    Google Scholar 

  • M.J. Moreno, G. Clayburne, et al., Diagn. Cytopathol. 22(4) (2000)

  • L. Mundt, K. Shanahan, Graff’s textbook of urinalysis and body fluids (Lippincott Williams & Wilkins, Philadelphia, 2010)

    Google Scholar 

  • S.K. Murthy, A. Sin, et al., Langmuir. ACS J. Surf. Colloids 20(26) (2004)

  • S. Nagrath, L.V. Sequist, et al., Nature 450(7173) (2007)

  • J. Parvizi, C. Jacovides, et al., Clin. Orthop. Relat. Res. 469(11) (2011)

  • J. Pawlowska, A. Mikosik, et al., Folia histochemica et cytobiologica/Polish Academy of Sciences. Pol. Histochem. Cytochemical Soc. 47(4) (2009)

  • B.D. Plouffe, T. Kniazeva, et al., FASEB journal. Off. Publ. Fed. Am. Soc. Exp. Biol. 23(10) (2009)

  • L. Pulido, E. Ghanem, et al., Clin. Orthop. Relat. Res. 466(7) (2008)

  • P.A. Revell, G.S. Matharu, et al., Bone Joint Res 5(2) (2016)

  • M.W. Ropes, W. Bauer, Synovial fluid changes in joint disease (Harvard University Press, Cambridge, 1953)

    Google Scholar 

  • M. F. Schinsky, C. J. Della Valle, et al. J Bone Joint Surg. Am. 90(9) (2008)

  • E. Shimada, G. Matsumura, J. Biochem. 88(4) (1980)

  • K.V. Sreekanth, Y. Alapan, et al., Nat. Mater. 15(6) (2016)

  • S.L. Stott, C.H. Hsu, et al., Proc. Natl. Acad. Sci. U. S. A. 107(43) (2010)

  • Y. Su, G. Chen, et al., Chem. Eng. Technol. 37(3) (2014)

  • L. Sundblad, Acta Orthop. Scand. 20(2) (1950)

  • T.M. Tamer, Interdiscip. Toxicol. 6(3) (2013)

  • L.C. Tan, A.G. Mowat, et al., Arthritis Res. 2(2) (2000)

  • S. Tasoglu, U.A. Gurkan, et al., Chem. Soc. Rev. 42(13) (2013)

  • A. Trampuz, A.D. Hanssen, et al., Am. J. Med. 117(8) (2004)

  • H.K. Vincent, S.S. Percival, et al., Open. Orthop. J 7 (2013)

  • Z. Wang, S.Y. Chin, et al., Anal. Chem. 82(1) (2010)

  • L. Zhao, Y.T. Lu, et al., Adv. Mater. 25(21) (2013)

Download references

Acknowledgements

This work was supported in part by the Steven Garverick Innovation Incentive Award from United States Department of Veterans Affairs Advanced Platform Technology Center at Louis Stokes Cleveland Veterans Affairs Medical Center. The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government. We acknowledge with gratitude the contributions of patients and clinicians at Louis Stokes Cleveland Veterans Affairs Medical Center. The authors would like to thank Greg Field, Physician Assistant-Certified (PA-C),  and Susie Ivanov, PA-C for their assistance. We acknowledge Prof. João Maia and Jesse Gadley (Case Western Reserve University, Macromolecular Science and Engineering Department) for their help in synovial fluid viscosity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut A. Gurkan.

Electronic supplementary material

ESM 1

(DOCX 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krebs, J.C., Alapan, Y., Dennstedt, B.A. et al. Microfluidic processing of synovial fluid for cytological analysis. Biomed Microdevices 19, 20 (2017). https://doi.org/10.1007/s10544-017-0163-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0163-6

Keywords

Navigation