Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave. We have also investigated combinations of operating frequencies with waveguide materials and thicknesses for maximum sensitivity during the detection of protein and DNA biomarkers. Within our investigations neutravidin was used as a model protein biomarker and unpurified PCR amplified Salmonella DNA as the model genetic target. Our results clearly indicate the need for experimental verification of the optimum engineering and analytical parameters, in order to develop commercially viable systems for integrated analysis. The good reproducibility of the signal together with the ability of the array biochip to detect multiple samples hold promise for the future use of the integrated system in a Lab-on-a-Chip platform for application to molecular diagnostics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. M.U. Ahmed, I. Saaem, P.C. Wu, A.S. Brown, Crit. Rev. Biotechnol. 34, 180–196 (2014)

    Article  Google Scholar 

  2. D. Ballantine, Jr., S.J. Martin, A.J. Ricco, G.C. Frye, H. Wohltjen, R.M. White and E.T. Zellers, Acoustic wave sensors: Theory, design and physico-chemical applications (Academic Press, San Diego, 1996), p. 436

  3. P. Bröker, K. Lücke, M. Perpeet, T.M.A. Gronewold, Sensors Actuators B Chem. 165, 1–6 (2012)

    Article  Google Scholar 

  4. C.D. Chin, V. Linder, S.K. Sia, Lab Chip 12, 2118–2134 (2012)

    Article  Google Scholar 

  5. J. Du, G.L. Harding, J.A. Ogilvy, P.R. Dencher, M. Lake, Sens. Actuators, A 56, 211–219 (1996)

    Article  Google Scholar 

  6. E. Gizeli, Smart Mater. Struct. 6, 700–706 (1997)

    Article  Google Scholar 

  7. E. Gizeli, N.J. Goddard, C.R. Lowe, A.C. Stevenson, Sensors Actuators B Chem. 6, 131–137 (1992)

    Article  Google Scholar 

  8. T.M. Gronewold, Anal. Chim. Acta 603(2), 119–128 (2007)

    Article  Google Scholar 

  9. T.M. Gronewold, A. Baumgartner, E. Quandt, M. Famulok, Anal. Chem. 78(14), 4865–4871 (2006)

    Article  Google Scholar 

  10. I. Hein, G. Flenka, M. Krassnig, M. Wagner, J. Microbiol. Methods 66, 538–547 (2006)

    Article  Google Scholar 

  11. F. Josse, F. Bender, R.W. Carmose, Anal. Chem. 73(24), 5937–5944 (2001)

    Article  Google Scholar 

  12. Y.W. Kim, M.T. Meyer, A. Berkovich, S. Subramanian, A.A. Iliadis, W.E. Bentley, R. Ghodssi, Sens. Actuators, A 238, 140–149 (2016)

    Article  Google Scholar 

  13. G. Kovacs, M.J. Vellekoop, R. Haueis, G.W. Lubking, A. Venema, Sens. Actuators, A 43, 38–43 (1994)

    Article  Google Scholar 

  14. S. Krishnamoorthy, A.A. Iliadis, T. Bei, G.P. Chrousos, Biosens. Bioelectron. 24(2), 313–318 (2008)

    Article  Google Scholar 

  15. K. Länge, M. Rapp, Sensors Actuators B Chem. 142, 39–43 (2009)

    Article  Google Scholar 

  16. K. Länge, G. Blaess, A. Voigt, R. Götzen, M. Rapp, Biosens. Bioelectron. 22(2), 227–232 (2006)

    Article  Google Scholar 

  17. K. Länge, B.E. Rapp, M. Rapp, Anal. Bioanal. Chem. 391(5), 1509–1519 (2008)

    Article  Google Scholar 

  18. J. Lee, Y.S. Choi, Y. Lee, H.J. Lee, J.N. Lee, et al., Anal. Chem. 83(22), 8629–8635 (2011)

    Article  Google Scholar 

  19. W. Lee, J. Jung, Y.K. Hahn, S.K. Kim, Y. Lee, et al., Analyst 138(9), 2558–2566 (2013)

    Article  Google Scholar 

  20. D. Matatagui, D. Moynet, M.J. Fernandez, J. Fontecha, J.P. Esquivel, et al., Sensors Actuators B Chem. 185, 218–224 (2013)

    Article  Google Scholar 

  21. D. Matatagui, J.L. Fontecha, M.J. Fernandez, I. Gracia, C. Cane, J.P. Santos, M.C. Horrillo, Sensors 14, 12658–12669 (2014)

    Article  Google Scholar 

  22. G. McHale, F. Martin, M.I. Newton, J. Appl. Phys. 92, 3368–3379 (2002)

    Article  Google Scholar 

  23. K. Mitsakakis, E. Gizeli, Anal. Chim. Acta 699(1), 1–5 (2011a)

    Article  Google Scholar 

  24. K. Mitsakakis, E. Gizeli, Biosens. Bioelectron. 26(11), 4579–4584 (2011b)

    Article  Google Scholar 

  25. K. Mitsakakis, A. Tserepi, E. Gizeli, J. Microelectromech. Syst. 17, 1010–1019 (2008)

    Article  Google Scholar 

  26. K. Mitsakakis, A. Tsortos, E. Gizeli, Analyst 139(16), 3918–3925 (2014)

    Article  Google Scholar 

  27. G. Papadakis, E. Gizeli, Anal. Methods 6, 363–371 (2014)

    Article  Google Scholar 

  28. G. Papadakis, A. Tsortos, E. Gizeli, Biosens. Bioelectron. 25(4), 702–707 (2009)

    Article  Google Scholar 

  29. G. Papadakis, A. Tsortos, F. Bender, E.E. Ferapontova, E. Gizeli, Anal. Chem. 84, 1854–1861 (2012)

    Article  Google Scholar 

  30. G. Papadakis, A. Tsortos, A. Kordas, I. Tiniakou, E. Morou, J. Vontas, D. Kardassis, E. Gizeli, Sci Rep 3, 2033 (2013)

    Article  Google Scholar 

  31. G. Papadakis, N. Skandalis, A. Dimopoulou, P. Glynos, E. Gizeli, PLoS One 10, e0132773 (2015)

    Article  Google Scholar 

  32. M. Perpeet, S. Glass, T. Gronewold, A. Kiwitz, A. Malavé, et al., Anal. Lett. 39, 1747–1757 (2006)

    Article  Google Scholar 

  33. A. Rasmusson, E. Gizeli, J. Appl. Phys. 90, 5911–5914 (2001)

    Article  Google Scholar 

  34. K. Saha, F. Bender, E. Gizeli, Anal. Chem. 75(4), 835–842 (2003)

    Article  Google Scholar 

  35. O. Tamarin, S. Comeau, C. Déjous, D. Moynet, D. Rebière, J. Bezian, J. Pistré, Biosens. Bioelectron. 18(5–6), 755–763 (2003)

    Article  Google Scholar 

  36. A. Tsortos, G. Papadakis, K. Mitsakakis, K. Melzak, E. Gizeli, Biophys. J. 94(7), 2706–2715 (2008)

    Article  Google Scholar 

  37. A. Tsortos, A. Grammoustianou, R. Lymbouridou, G. Papadakis, E. Gizeli, Chem. Commun. 51, 11504–11507 (2015)

    Article  Google Scholar 

  38. A. Tsortos, G. Papadakis, E. Gizeli, Anal. Chem. 88, 6472–6478 (2016)

    Article  Google Scholar 

  39. I. Voiculescu, A.N. Nordin, Biosens Bioelectron 33, 1–9 (2012)

    Article  Google Scholar 

  40. J. Wu, Z. He, Q. Chen, J.-M. Lin, Trac-Trend Anal Chem 80, 213–231 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the European Commission through FP7-ICT-2011.3.2 (LOVE-FOOD, No 317742) and HORIZON2020-ICT 28-2015 (LoveFood2Market, No 687681) grants.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to G. Papadakis or E. Gizeli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papadakis, G., Friedt, J.M., Eck, M. et al. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics. Biomed Microdevices 19, 16 (2017). https://doi.org/10.1007/s10544-017-0159-2

Download citation

Keywords

  • Biosensor
  • Love wave device
  • Acoustic array
  • Microfluidics
  • Molecular diagnostics
  • Lab-on-a-Chip