Biomedical Microdevices

, 19:16 | Cite as

Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics

  • G. PapadakisEmail author
  • J. M. Friedt
  • M. Eck
  • D. Rabus
  • G. Jobst
  • E. GizeliEmail author


The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave. We have also investigated combinations of operating frequencies with waveguide materials and thicknesses for maximum sensitivity during the detection of protein and DNA biomarkers. Within our investigations neutravidin was used as a model protein biomarker and unpurified PCR amplified Salmonella DNA as the model genetic target. Our results clearly indicate the need for experimental verification of the optimum engineering and analytical parameters, in order to develop commercially viable systems for integrated analysis. The good reproducibility of the signal together with the ability of the array biochip to detect multiple samples hold promise for the future use of the integrated system in a Lab-on-a-Chip platform for application to molecular diagnostics.


Biosensor Love wave device Acoustic array Microfluidics Molecular diagnostics Lab-on-a-Chip 



The authors would like to acknowledge the financial support of the European Commission through FP7-ICT-2011.3.2 (LOVE-FOOD, No 317742) and HORIZON2020-ICT 28-2015 (LoveFood2Market, No 687681) grants.


  1. M.U. Ahmed, I. Saaem, P.C. Wu, A.S. Brown, Crit. Rev. Biotechnol. 34, 180–196 (2014)CrossRefGoogle Scholar
  2. D. Ballantine, Jr., S.J. Martin, A.J. Ricco, G.C. Frye, H. Wohltjen, R.M. White and E.T. Zellers, Acoustic wave sensors: Theory, design and physico-chemical applications (Academic Press, San Diego, 1996), p. 436Google Scholar
  3. P. Bröker, K. Lücke, M. Perpeet, T.M.A. Gronewold, Sensors Actuators B Chem. 165, 1–6 (2012)CrossRefGoogle Scholar
  4. C.D. Chin, V. Linder, S.K. Sia, Lab Chip 12, 2118–2134 (2012)CrossRefGoogle Scholar
  5. J. Du, G.L. Harding, J.A. Ogilvy, P.R. Dencher, M. Lake, Sens. Actuators, A 56, 211–219 (1996)CrossRefGoogle Scholar
  6. E. Gizeli, Smart Mater. Struct. 6, 700–706 (1997)CrossRefGoogle Scholar
  7. E. Gizeli, N.J. Goddard, C.R. Lowe, A.C. Stevenson, Sensors Actuators B Chem. 6, 131–137 (1992)CrossRefGoogle Scholar
  8. T.M. Gronewold, Anal. Chim. Acta 603(2), 119–128 (2007)CrossRefGoogle Scholar
  9. T.M. Gronewold, A. Baumgartner, E. Quandt, M. Famulok, Anal. Chem. 78(14), 4865–4871 (2006)CrossRefGoogle Scholar
  10. I. Hein, G. Flenka, M. Krassnig, M. Wagner, J. Microbiol. Methods 66, 538–547 (2006)CrossRefGoogle Scholar
  11. F. Josse, F. Bender, R.W. Carmose, Anal. Chem. 73(24), 5937–5944 (2001)CrossRefGoogle Scholar
  12. Y.W. Kim, M.T. Meyer, A. Berkovich, S. Subramanian, A.A. Iliadis, W.E. Bentley, R. Ghodssi, Sens. Actuators, A 238, 140–149 (2016)CrossRefGoogle Scholar
  13. G. Kovacs, M.J. Vellekoop, R. Haueis, G.W. Lubking, A. Venema, Sens. Actuators, A 43, 38–43 (1994)CrossRefGoogle Scholar
  14. S. Krishnamoorthy, A.A. Iliadis, T. Bei, G.P. Chrousos, Biosens. Bioelectron. 24(2), 313–318 (2008)CrossRefGoogle Scholar
  15. K. Länge, M. Rapp, Sensors Actuators B Chem. 142, 39–43 (2009)CrossRefGoogle Scholar
  16. K. Länge, G. Blaess, A. Voigt, R. Götzen, M. Rapp, Biosens. Bioelectron. 22(2), 227–232 (2006)CrossRefGoogle Scholar
  17. K. Länge, B.E. Rapp, M. Rapp, Anal. Bioanal. Chem. 391(5), 1509–1519 (2008)CrossRefGoogle Scholar
  18. J. Lee, Y.S. Choi, Y. Lee, H.J. Lee, J.N. Lee, et al., Anal. Chem. 83(22), 8629–8635 (2011)CrossRefGoogle Scholar
  19. W. Lee, J. Jung, Y.K. Hahn, S.K. Kim, Y. Lee, et al., Analyst 138(9), 2558–2566 (2013)CrossRefGoogle Scholar
  20. D. Matatagui, D. Moynet, M.J. Fernandez, J. Fontecha, J.P. Esquivel, et al., Sensors Actuators B Chem. 185, 218–224 (2013)CrossRefGoogle Scholar
  21. D. Matatagui, J.L. Fontecha, M.J. Fernandez, I. Gracia, C. Cane, J.P. Santos, M.C. Horrillo, Sensors 14, 12658–12669 (2014)CrossRefGoogle Scholar
  22. G. McHale, F. Martin, M.I. Newton, J. Appl. Phys. 92, 3368–3379 (2002)CrossRefGoogle Scholar
  23. K. Mitsakakis, E. Gizeli, Anal. Chim. Acta 699(1), 1–5 (2011a)CrossRefGoogle Scholar
  24. K. Mitsakakis, E. Gizeli, Biosens. Bioelectron. 26(11), 4579–4584 (2011b)CrossRefGoogle Scholar
  25. K. Mitsakakis, A. Tserepi, E. Gizeli, J. Microelectromech. Syst. 17, 1010–1019 (2008)CrossRefGoogle Scholar
  26. K. Mitsakakis, A. Tsortos, E. Gizeli, Analyst 139(16), 3918–3925 (2014)CrossRefGoogle Scholar
  27. G. Papadakis, E. Gizeli, Anal. Methods 6, 363–371 (2014)CrossRefGoogle Scholar
  28. G. Papadakis, A. Tsortos, E. Gizeli, Biosens. Bioelectron. 25(4), 702–707 (2009)CrossRefGoogle Scholar
  29. G. Papadakis, A. Tsortos, F. Bender, E.E. Ferapontova, E. Gizeli, Anal. Chem. 84, 1854–1861 (2012)CrossRefGoogle Scholar
  30. G. Papadakis, A. Tsortos, A. Kordas, I. Tiniakou, E. Morou, J. Vontas, D. Kardassis, E. Gizeli, Sci Rep 3, 2033 (2013)CrossRefGoogle Scholar
  31. G. Papadakis, N. Skandalis, A. Dimopoulou, P. Glynos, E. Gizeli, PLoS One 10, e0132773 (2015)CrossRefGoogle Scholar
  32. M. Perpeet, S. Glass, T. Gronewold, A. Kiwitz, A. Malavé, et al., Anal. Lett. 39, 1747–1757 (2006)CrossRefGoogle Scholar
  33. A. Rasmusson, E. Gizeli, J. Appl. Phys. 90, 5911–5914 (2001)CrossRefGoogle Scholar
  34. K. Saha, F. Bender, E. Gizeli, Anal. Chem. 75(4), 835–842 (2003)CrossRefGoogle Scholar
  35. O. Tamarin, S. Comeau, C. Déjous, D. Moynet, D. Rebière, J. Bezian, J. Pistré, Biosens. Bioelectron. 18(5–6), 755–763 (2003)CrossRefGoogle Scholar
  36. A. Tsortos, G. Papadakis, K. Mitsakakis, K. Melzak, E. Gizeli, Biophys. J. 94(7), 2706–2715 (2008)CrossRefGoogle Scholar
  37. A. Tsortos, A. Grammoustianou, R. Lymbouridou, G. Papadakis, E. Gizeli, Chem. Commun. 51, 11504–11507 (2015)CrossRefGoogle Scholar
  38. A. Tsortos, G. Papadakis, E. Gizeli, Anal. Chem. 88, 6472–6478 (2016)CrossRefGoogle Scholar
  39. I. Voiculescu, A.N. Nordin, Biosens Bioelectron 33, 1–9 (2012)CrossRefGoogle Scholar
  40. J. Wu, Z. He, Q. Chen, J.-M. Lin, Trac-Trend Anal Chem 80, 213–231 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Molecular Biology and Biotechnology-FORTHHeraklionGreece
  2. 2.FEMTO-ST Time & Frequency/SENSeORBesançonFrance
  3. 3.SENSeOR SASTemis InnovationBesançonFrance
  4. 4.Jobst Technologies GmbHFreiburgGermany
  5. 5.Department of BiologyUniversity of CreteVassilika VoutonGreece

Personalised recommendations