Biomedical Microdevices

, 19:11 | Cite as

Yeasts identification in microfluidic devices using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH)

  • André M. Ferreira
  • Daniela Cruz-Moreira
  • Laura Cerqueira
  • João M. Miranda
  • Nuno F. AzevedoEmail author


Peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) is a highly specific molecular method widely used for microbial identification. Nonetheless, and due to the detection limit of this technique, a time-consuming pre-enrichment step is typically required before identification. In here we have developed a lab-on-a-chip device to concentrate cell suspensions and speed up the identification process in yeasts. The PNA-FISH protocol was optimized to target Saccharomyces cerevisiae, a common yeast that is very relevant for several types of food industries. Then, several coin-sized microfluidic devices with different geometries were developed. Using Computational fluid dynamics (CFD), we modeled the hydrodynamics inside the microchannels and selected the most promising options. SU-8 structures were fabricated based on the selected designs and used to produce polydimethylsiloxane-based microchips by soft lithography. As a result, an integrated approach combining microfluidics and PNA-FISH for the rapid identification of S. cerevisiae was achieved. To improve fluid flow inside microchannels and the PNA-FISH labeling, oxygen plasma treatment was applied to the microfluidic devices and a new methodology to introduce the cell suspension and solutions into the microchannels was devised. A strong PNA-FISH signal was observed in cells trapped inside the microchannels, proving that the proposed methodology works as intended. The microfluidic designs and PNA-FISH procedure described in here should be easily adaptable for detection of other microorganisms of similar size.


PNA-Fish Microfluidics Modelling Fluid mechanics Oxygen plasma treatment 



This work was financially supported by: 1) POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds, through FCT - Fundação para a Ciência e a Tecnologia; 2) NORTE‐01‐0145‐FEDER‐000005 – LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and 3) FCT (Scholarship SFRH/BPD/98525/2013) and Project NanoDiaBac (ENMed/0003/2014).

Compliance with ethical standards

Ethical statements

All authors declare that they have no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. I. Abubakar, L. Irvine, C. Aldus, G. Wyatt, R. Fordham, S. Schelenz, L. Shepstone, A. Howe, M. Peck, P. Hunter, "A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food." health Technol. Assess. 11(36), 1–216 (2007)Google Scholar
  2. C. Almeida, N.F. Azevedo, R. Fernandes, C.W. Keevil, M. Vieira, "fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples." Appl. Environ. Microbiol. 76(13), 4476–4485 (2010)Google Scholar
  3. J. Alvankarian, A. Bahadorimehr, B.Y. Majlis, A pillar-based microfilter for isolation of white blood cells on elastomeric substrate. Biomicrofluidics 7(1), 014102 (2013)CrossRefGoogle Scholar
  4. R. Amann, B.M. Fuchs, Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Rev. Microbiol. 6(5), 339–348 (2008)CrossRefGoogle Scholar
  5. R.I. Amann, B. Zarda, D. Stahl, K. Schleifer, Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 58(9), 3007–3011 (1992)Google Scholar
  6. J.R. Anderson, D.T. Chiu, R.J. Jackman, O. Cherniavskaya, J.C. McDonald, H. Wu, S.H. Whitesides, G.M. Whitesides, Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal. Chem. 72(14), 3158–3164 (2000)CrossRefGoogle Scholar
  7. I. Andorra, M. Monteiro, B. Esteve-Zarzoso, H. Albergaria, A. Mas, Analysis and direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR. Food Microbiol. 28(8), 1483–1491 (2011)CrossRefGoogle Scholar
  8. ANSYS® Fluent, Release 12.0, getting started guide (ANSYS Inc., Canonsburg, 2009)Google Scholar
  9. B. Bottari, D. Ercolini, M. Gatti, E. Neviani, Application of FISH technology for microbiological analysis: current state and prospects. Appl. Microbiol. Biotechnol. 73(3), 485–494 (2006)CrossRefGoogle Scholar
  10. L. Cerqueira, N.F. Azevedo, C. Almeida, T. Jardim, C.W. Keevil, M.J. Vieira, DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int. J. Mol. Sci. 9(10), 1944–1960 (2008)CrossRefGoogle Scholar
  11. L. Cerqueira, R.M. Fernandes, R.M. Ferreira, M. Oleastro, F. Carneiro, C. Brandão, P. Pimentel-Nunes, M. Dinis-Ribeiro, C. Figueiredo, C.W. Keevil, Validation of a fluorescence in situ hybridization method using peptide nucleic acid probes for detection of Helicobacter pylori clarithromycin resistance in gastric biopsy specimens. J. Clin. Microbiol. 51(6), 1887–1893 (2013)CrossRefGoogle Scholar
  12. R. Davidsson, B. Johansson, V. Passoth, M. Bengtsson, T. Laurell, J. Emnéus, Microfluidic biosensing systems part II. Monitoring the dynamic production of glucose and ethanol from microchip-immobilised yeast cells using enzymatic chemiluminescent μ-biosensors. Lab Chip 4(5), 488–494 (2004)CrossRefGoogle Scholar
  13. J.P. Devadhasan, S. Kim, J. An, Fish-on-a-chip: a sensitive detection microfluidic system for alzheimer's disease. J. Biomed. Sci. 18(1), 33 (2011)CrossRefGoogle Scholar
  14. H. Feldmann, Yeast: molecular and cell biology (John Wiley & Sons, Hoboken, 2011)Google Scholar
  15. G. Gerdts, G. Luedke, FISH and chips: marine bacterial communities analyzed by flow cytometry based on microfluidics. J. Microbiol. Methods 64(2), 232–240 (2006)CrossRefGoogle Scholar
  16. J.R. Hart, Ethylenediaminetetraacetic acid and related chelating agents. Ullmann’s Encyclopedia of Industrial Chemistry (John Wiley & Sons, Hoboken, 2000)Google Scholar
  17. J. Heo, S.Z. Hua, An overview of recent strategies in pathogen sensing. Sensors 9(6), 4483–4502 (2009)CrossRefGoogle Scholar
  18. H. Hillborg, J. Ankner, U.W. Gedde, G. Smith, H. Yasuda, K. Wikström, Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 41(18), 6851–6863 (2000)CrossRefGoogle Scholar
  19. S.M. Hong, S.H. Kim, J.H. Kim, H.I. Hwang, Hydrophilic surface modification of PDMS using atmospheric RF plasma. J. Phys. Conf. Ser. 34(1), 656–661 (IOP Publishing, 2006)Google Scholar
  20. D. Huber, J. Rudolf, P. Ansari, B. Galler, M. Führer, C. Hasenhindl, S. Baumgartner, Effectiveness of natural and synthetic blocking reagents and their application for detecting food allergens in enzyme-linked immunosorbent assays. Anal. Bioanal. Chem. 394(2), 539–548 (2009)CrossRefGoogle Scholar
  21. Y.H. Hui, L.M. Nollet, F. Toldrá, Advances in food diagnostics (John Wiley & Sons, Hoboken, 2008)Google Scholar
  22. R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  23. E. Lagally, Microfluidics and nanotechnology: biosensing to the single molecule limit (CRC Press, Boca Raton, 2014)Google Scholar
  24. B.P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19(1), 59–98 (1979)CrossRefzbMATHGoogle Scholar
  25. P.C. Li, L. de Camprieu, J. Cai, M. Sangar, Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips. Lab Chip 4(3), 174–180 (2004)CrossRefGoogle Scholar
  26. H. Makamba, J.H. Kim, K. Lim, N. Park, J.H. Hahn, Surface modification of poly (dimethylsiloxane) microchannels. Electrophoresis 24(21), 3607–3619 (2003)CrossRefGoogle Scholar
  27. F. Meireles, PNA-FISH with microfluidics (Biomedical Engineering, Porto, Faculty of Engineering, 2012)Google Scholar
  28. S.K. Mitra, S. Chakraborty, Microfluidics and nanofluidics handbook: fabrication, implementation, and applications (CRC Press, Boca Raton, 2011)CrossRefGoogle Scholar
  29. D. Moreira, Integration of microfluidics and fluorescence In Situ hybridization (FISH) for the rapid identification of microorganisms (Biomedical Engineering, Porto, Faculty of Engineering, 2014)Google Scholar
  30. H. Morgan, D. Holmes, N. G. Green, 3D focusing of nanoparticles in microfluidic channels. IEE Proc. Nanobiotechnol. 150(2), 76–81 (IET, 2003)Google Scholar
  31. A. Moter, U.B. Göbel, Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods 41(2), 85–112 (2000)CrossRefGoogle Scholar
  32. P.E. Nielsen, Peptide nucleic acid: a versatile tool in genetic diagnostics and molecular biology. Curr. Opin. Biotechnol. 12(1), 16–20 (2001)MathSciNetCrossRefGoogle Scholar
  33. P.E. Nielsen, G. Haaima, Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone. Chem. Soc. Rev. 26(2), 73–78 (1997)CrossRefGoogle Scholar
  34. P.E. Nielsen, M. Egholm, R.H. Berg, O. Buchardt, Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037), 1497–1500 (1991)CrossRefGoogle Scholar
  35. S. Patankar, Numerical heat transfer and fluid flow (CRC press, Boca Raton, 1980)zbMATHGoogle Scholar
  36. H. Perry-O'Keefe, S. Rigby, K. Oliveira, D. Sørensen, H. Stender, J. Coull, J. Hyldig-Nielsen, Identification of indicator microorganisms using a standardized PNA FISH method. J. Microbiol. Methods 47(3), 281–292 (2001)CrossRefGoogle Scholar
  37. C. Probst, A. Grünberger, W. Wiechert, D. Kohlheyer, Polydimethylsiloxane (PDMS) sub-micron traps for single-cell analysis of bacteria. Micromachines 4(4), 357–369 (2013)CrossRefGoogle Scholar
  38. A. Rohde, J.A. Hammerl, B. Appel, R. Dieckmann, S. Al Dahouk, FISHing for bacteria in food–a promising tool for the reliable detection of pathogenic bacteria? Food Microbiol. 46, 395–407 (2015)CrossRefGoogle Scholar
  39. A.H. Rose, Chemical microbiology: an introduction to microbial physiology (Elsevier, Amsterdam, 2014)Google Scholar
  40. R.S. Santos, N. Guimarães, P. Madureira, N.F. Azevedo, Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect. J. Biotechnol. 187, 16–24 (2014)CrossRefGoogle Scholar
  41. H. Sharma, D. Nguyen, A. Chen, V. Lew, M. Khine, Unconventional low-cost fabrication and patterning techniques for point of care diagnostics. Ann. Biomed. Eng. 39(4), 1313–1327 (2011)CrossRefGoogle Scholar
  42. V. Sieben, C.D. Marun, P. Pilarski, G. Kaigala, L. Pilarski, C. Backhouse, FISH and chips: chromosomal analysis on microfluidic platforms. IET Nanobiotechnol. 1(3), 27–35 (2007)CrossRefGoogle Scholar
  43. V.J. Sieben, C.S. Debes-Marun, L.M. Pilarski, C.J. Backhouse, An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Lab Chip 8(12), 2151–2156 (2008)CrossRefGoogle Scholar
  44. H. Stender, M. Fiandaca, J.J. Hyldig-Nielsen, J. Coull, PNA for rapid microbiology. J. Microbiol. Methods 48(1), 1–17 (2002)CrossRefGoogle Scholar
  45. J.H. Sung, M.L. Shuler, Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed. Microdevices 11(4), 731–738 (2009)CrossRefGoogle Scholar
  46. S. Thorslund, O. Klett, F. Nikolajeff, K. Markides, J. Bergquist, A hybrid poly (dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed. Microdevices 8(1), 73–79 (2006)CrossRefGoogle Scholar
  47. I. Vedarethinam, P. Shah, M. Dimaki, Z. Tumer, N. Tommerup, W.E. Svendsen, Metaphase FISH on a chip: miniaturized microfluidic device for fluorescence in situ hybridization. Sensors 10(11), 9831–9846 (2010)CrossRefGoogle Scholar
  48. J.R. Warner, "the economics of ribosome biosynthesis in yeast." trends Biochem. Sci. 24(11), 437–440 (1999)Google Scholar
  49. C. Xi, S.A. Boppart, L. Raskin, Use of molecular beacons for the detection of bacteria in microfluidic devices. Micromachining and Microfabrication, International Society for Optics and Photonics. 4982, 170–177 (2003)Google Scholar
  50. Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)CrossRefGoogle Scholar
  51. A. Xufre, H. Albergaria, J. Inácio, I. Spencer-Martins, F. Gírio, Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Int. J. Food Microbiol. 108(3), 376–384 (2006)Google Scholar
  52. H. Yamazoe, Y. Sugiyama, A. El Omri, Y. Hagihara, T. Okada, Facile immunostaining and labeling of nonadherent cells using a microfluidic device to entrap the cells. J. Biosci. Bioeng. 117(3), 375–378 (2014)CrossRefGoogle Scholar
  53. S.F. Yeo, B. Wong, Current status of nonculture methods for diagnosis of invasive fungal infections. Clin. Microbiol. Rev. 15(3), 465–484 (2002)CrossRefGoogle Scholar
  54. E.W. Young, D.J. Beebe, Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39(3), 1036–1048 (2010)CrossRefGoogle Scholar
  55. Q. Zhang, L. Zhu, H. Feng, S. Ang, F.S. Chau, W.-T. Liu, Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. Anal. Chim. Acta 556(1), 171–177 (2006)CrossRefGoogle Scholar
  56. Y. Zhang, C. Luo, K. Zou, Z. Xie, O. Brandman, Q. Ouyang, H. Li, Single cell analysis of yeast replicative aging using a new generation of microfluidic device. PLoS One 7(11), e48275 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • André M. Ferreira
    • 1
    • 2
  • Daniela Cruz-Moreira
    • 1
    • 2
  • Laura Cerqueira
    • 1
    • 3
  • João M. Miranda
    • 2
  • Nuno F. Azevedo
    • 1
    Email author
  1. 1.LEPABE– Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical EngineeringFaculty of Engineering of University of PortoPortoPortugal
  2. 2.CEFT–Transport Phenomena Research Center, Department of Chemical EngineeringFaculty of Engineering of University of PortoPortoPortugal
  3. 3.Biomode 2BragaPortugal

Personalised recommendations