Skip to main content

Advertisement

Log in

Frequency-controlled wireless shape memory polymer microactuator for drug delivery application

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper reports the wireless Shape-Memory-Polymer actuator operated by external radio frequency magnetic fields and its application in a drug delivery device. The actuator is driven by a frequency-sensitive wireless resonant heater which is bonded directly to the Shape-Memory-Polymer and is activated only when the field frequency is tuned to the resonant frequency of heater. The heater is fabricated using a double-sided Cu-clad Polyimide with much simpler fabrication steps compared to previously reported methods. The actuation range of 140 μm as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 W RF power. A repeatability test shows that the actuator’s average maximum displacement is 110 μm and standard deviation of 12 μm. An experiment is conducted to demonstrate drug release with 5 μL of an acidic solution loaded in the reservoir and the device is immersed in DI water. The actuator is successfully operated in water through wireless activation. The acidic solution is released and diffused in water with an average release rate of 0.172 μL/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • S.K. Ahn, P. Deshmukh, R.M. Kasi, Macromolecules 43, 7330 (2010)

    Article  Google Scholar 

  • P. Basset, A. Kaiser, P. Bigotte, D. Collard, and L. Buchaillot, in Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference (2002), pp. 606–609

  • S. Chen, J. Hu, H. Zhuo, Y. Zhu, Mater. Lett. 62, 4088 (2008)

    Article  Google Scholar 

  • F.P. Du, E.Z. Ye, W. Yang, T.H. Shen, C.Y. Tang, X.L. Xie, X.P. Zhou, W.C. Law, Composites Part B Engineering 68, 170 (2015)

    Article  Google Scholar 

  • R. Farra, N.F. Sheppard Jr., L. McCabe, R.M. Neer, J.M. Anderson, J.T. Santini Jr., M.J. Cima, R. Langer, Sc. Transl. Med. 4 (2012)

  • X.Q. Feng, G.Z. Zhang, Q.M. Bai, H.Y. Jiang, B. Xu, H.J. Li, Macromolecular Materials Engineering 301, 125 (2016)

    Article  Google Scholar 

  • A. Fick, Annalender Physik 170, 59 (1855)

    Article  Google Scholar 

  • J. Fong, Z. Xiao, K. Takahata, Lab Chip – Miniaturisation Chemistry Biology 15, 1050 (2015)

    Article  Google Scholar 

  • S.Y. Gu, S.P. Jin, X.F. Gao, J. Mu, Smart Mater. Struct. 25 (2016)

  • L.H. Han, S. Chen, Sensors Actuators, A: Physical 121, 35 (2005)

    Article  Google Scholar 

  • J. Li, W.R. Rodgers, T. Xie, Polymer 52, 5320 (2011)

    Article  Google Scholar 

  • R. Lo, P.Y. Li, S. Saati, R.N. Agrawal, M.S. Humayun, E. Meng, Biomed. Microdevices 11, 959 (2009)

    Article  Google Scholar 

  • H. Lu, Y. Yao, L. Lin, Pigment Resin Technology 43, 26 (2014)

    Article  Google Scholar 

  • D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Lasers Surgery Medicine 30, 1 (2002)

    Article  Google Scholar 

  • H. Meng and G. Li, Polymer(United Kingdom) 54, 2199 (2013).

    Google Scholar 

  • M.S. Mohamed Ali, K. Takahata, Sensors Actuators A: Physical 163, 363 (2010)

    Article  Google Scholar 

  • M.S. Mohamed Ali, K. Takahata, J. Micromech. Microeng. 21 (2011)

  • J.H. Prescott, S. Lipka, S. Baldwin, N.F. Sheppard Jr., J.M. Maloney, J. Coppeta, B. Yomtov, M.A. Staples, J.T. Santini Jr., Nat. Biotechnol. 24, 437 (2006)

    Article  Google Scholar 

  • T.J. Smith, P.J. Coyne, W.R. Smith, J.D. Roberts, V. Smith, American Journal Hematology 78, 153 (2005)

    Article  Google Scholar 

  • S. Smith, T.B. Tang, J.G. Terry, J.T.M. Stevenson, B.W. Flynn, H.M. Reekie, A.F. Murray, A.M. Gundlach, D. Renshaw, B. Dhillon, A. Ohtori, Y. Inoue, A.J. Walton, IET Nanobiotechnology 1, 80 (2007)

    Article  Google Scholar 

  • H. Tamagawa, Mater. Lett. 64, 749 (2010)

    Article  Google Scholar 

  • H. Tamagawa, K. Kikuchi, G. Nagai, Sensors Actuators, A: Physical 163, 356 (2010)

    Article  Google Scholar 

  • T.B. Tang, S. Smith, B.W. Flynn, J.T.M. Stevenson, A.M. Gundlach, H.M. Reekie, A.F. Murray, D. Renshaw, B. Dhillon, A. Ohtori, Y. Inoue, J.G. Terry, A.J. Walton, IET Nanobiotechnology 2, 72 (2008)

    Article  Google Scholar 

  • K. Vollmers, D.R. Frutiger, B.E. Kratochvil, B.J. Nelson, Appl. Phys. Lett. 92 (2008)

  • Y. Wang, R. Zhao, S. Wang, Z. Liu, R. Tang, Biomaterials 75, 71 (2016)

    Article  Google Scholar 

  • T. Weigel, R. Mohr, A. Lendlein, Smart Materials Structures 18, 025011 (2009)

    Article  Google Scholar 

  • S.S. Zaidi, F. Lamarque, J. Favergeon, O. Carton, C. Prelle, M. Lejeune, A. Zeinert, Journal Intelligent Material Systems Structures 21, 175 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Ministry of Science, Technology and Innovation Malaysia under E-science Fund (03-01-06-SF1211) and Ministry of Higher Education Malaysia (MOHE) under PRGS (1/13/TK04/UTM/02/01) and FRGS (2/2014/TK01/UTM/02/3) schemes. M. A. Zainal acknowledges the financial support from Universiti Teknologi Malaysia (UTM) under Zamalah scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Mohamed Ali.

Electronic supplementary material

ESM 1

(MPEG 34150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainal, M.A., Ahmad, A. & Mohamed Ali, M.S. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application. Biomed Microdevices 19, 8 (2017). https://doi.org/10.1007/s10544-017-0148-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0148-5

Keywords

Navigation