3D carbon nanofiber microelectrode arrays fabricated by plasma-assisted pyrolysis to enhance sensitivity and stability of real-time dopamine detection

Abstract

In this paper, we have fabricated 3D carbon nanofiber microelectrode arrays (MEAs) with highly reproducible and rich chemical surface areas for fast scan cyclic voltammetry (FSCV). Carbon nanofibers are created from negative photoresist by a new process called dual O2 plasma-assisted pyrolysis. The proposed approach significantly improves film adhesion and increases surface reactivity. We showcase our sensor’s compatibility with FSCV analysis by demonstrating highly sensitive and stable FSCV dopamine measurements on a prototype 4-channel array. We envision with proper surface fuctionalization the 3D carbon nanofiber MEA enable sensitive and reliable detection of multiple neurotransmitters simultaneously.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. M. F. De Volder, R. Vansweevelt, P. Wagner, D. Reynaerts, C. Van Hoof, A. J. Hart, Hierarchical carbon nanowire microarchitectures made by plasma-assisted pyrolysis of photoresist. ACS Nano 5(8), 6593–6600 (2011)

    Article  Google Scholar 

  2. A. K. Dengler, G. S. McCarty, Microfabricated microelectrode sensor for measuring background and slowly changing dopamine concentrations. J. Electroanal. Chem. 693, 28–33 (2013)

    Article  Google Scholar 

  3. S. Donner, H.-W. Li, E. S. Yeung, M. D. Porter, Fabrication of optically transparent carbon electrodes by the pyrolysis of photoresist films: approach to single-molecule spectroelectrochemistry. Anal. Chem. 78(8), 2816–2822 (2006)

    Article  Google Scholar 

  4. F. Faridbod, M. R. Ganjali, R. Dinarvand, P. Norouzi, Developments in the field of conducting and non-conducting polymer based potentiometric membrane sensors for ions over the past decade. Sensors 8(4), 2331–2412 (2008)

    Article  Google Scholar 

  5. F. Gonon, C. Fombarlet, M. Buda, J. F. Pujol, Electrochemical treatment of pyrolytic carbon fiber electrodes. Anal. Chem. 53(9), 1386–1389 (1981)

    Article  Google Scholar 

  6. M. L. Heien, P. E. Phillips, G. D. Stuber, A. T. Seipel, R. M. Wightman, Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128(12), 1413–1419 (2003)

    Article  Google Scholar 

  7. M. Hirabayashi, B. Mehta, N. W. Vahidi, A. Khosla, S. Kassegne, Functionalization and characterization of pyrolyzed polymer based carbon microstructures for bionanoelectronics platforms. J. Micromech. Microeng. 23(11), 115001 (2013)

    Article  Google Scholar 

  8. Jenkins, G. M.; Kawamura, K., Polymeric carbons--carbon fibre, glass and char. Cambridge University Press 1976.

  9. R. T. Kachoosangi, R. G. Compton, A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode. Anal. Bioanal. Chem. 387(8), 2793–2800 (2007)

    Article  Google Scholar 

  10. A. S. Khan, A. C. Michael, Invasive consequences of using micro-electrodes and microdialysis probes in the brain. TrAC Trends Anal. Chem. 22(8), 503–508 (2003)

    Article  Google Scholar 

  11. J. Kim, X. Song, K. Kinoshita, M. Madou, R. White, Electrochemical studies of carbon films from pyrolyzed photoresist. J. Electrochem. Soc. 145(7), 2314–2319 (1998)

    Article  Google Scholar 

  12. R. Kostecki, X. Song, K. Kinoshita, Fabrication of interdigitated carbon structures by laser pyrolysis of photoresist. Electrochem. Solid-State Lett. 5(6), E29–E31 (2002)

    Article  Google Scholar 

  13. D. Michael, E. R. Travis, R. M. Wightman, Peer reviewed: color images for fast-scan CV measurements in biological systems. Anal. Chem. 70(17), 586A–592A (1998)

    Article  Google Scholar 

  14. L. M. Moretto, A. Mardegan, M. Cettolin, P. Scopece, Pyrolyzed photoresist carbon electrodes for trace Electroanalysis of nickel (II). Chemosensors 3(2), 157–168 (2015)

    Article  Google Scholar 

  15. O. Niwa, H. Tabei, Voltammetric measurements of reversible and quasi-reversible redox species using carbon film based interdigitated array microelectrodes. Anal. Chem. 66(2), 285–289 (1994)

    Article  Google Scholar 

  16. L. Nyholm, Electrochemical techniques for lab-on-a-chip applications. Analyst 130(5), 599–605 (2005)

    Article  Google Scholar 

  17. V. Penmatsa, T. Kim, M. Beidaghi, H. Kawarada, L. Gu, Z. Wang, C. Wang, Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing. Nanoscale 4(12), 3673–3678 (2012)

    Article  Google Scholar 

  18. V. Penmatsa, A. R. Ruslinda, M. Beidaghi, H. Kawarada, C. Wang, Platelet-derived growth factor oncoprotein detection using three-dimensional carbon microarrays. Biosens. Bioelectron. 39(1), 118–123 (2013)

    Article  Google Scholar 

  19. M. Poon, R. L. McCreery, In situ laser activation of glassy carbon electrodes. Anal. Chem. 58(13), 2745–2750 (1986)

    Article  Google Scholar 

  20. S. Ranganathan, R. L. McCreery, Electroanalytical performance of carbon films with near-atomic flatness. Anal. Chem. 73(5), 893–900 (2001)

    Article  Google Scholar 

  21. S. Ranganathan, R. Mccreery, S. M. Majji, M. Madou, Photoresist-derived carbon for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 147(1), 277–282 (2000)

    Article  Google Scholar 

  22. J. G. Roberts, B. P. Moody, G. S. McCarty, L. A. Sombers, Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes. Langmuir 26(11), 9116–9122 (2010)

    Article  Google Scholar 

  23. J. G. Roberts, K. L. Hamilton, L. A. Sombers, Comparison of electrode materials for the detection of rapid hydrogen peroxide fluctuations using background-subtracted fast scan cyclic voltammetry. Analyst 136(17), 3550–3556 (2011)

    Article  Google Scholar 

  24. D. Sánchez-Molas, J. Cases-Utrera, P. Godignon, F. J. del Campo, Mercury detection at microfabricated pyrolyzed photoresist film (PPF) disk electrodes. Sensors Actuators B Chem. 186, 293–299 (2013)

    Article  Google Scholar 

  25. A. Singh, J. Jayaram, M. Madou, S. Akbar, Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 149(3), E78–E83 (2002)

    Article  Google Scholar 

  26. E. Sinkala, J. E. McCutcheon, M. J. Schuck, E. Schmidt, M. F. Roitman, D. T. Eddington, Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry. Lab Chip 12(13), 2403–2408 (2012)

    Article  Google Scholar 

  27. Y. Song, R. Agrawal, Y. Hao, C. Chen, C. Wang, C-MEMS based microsupercapacitors and microsensors. ECS Trans. 61(7), 55–64 (2014)

    Article  Google Scholar 

  28. A. M. Strand, B. J. Venton, Flame etching enhances the sensitivity of carbon-fiber microelectrodes. Anal. Chem. 80(10), 3708–3715 (2008)

    Article  Google Scholar 

  29. P. Takmakov, M. K. Zachek, R. B. Keithley, P. L. Walsh, C. Donley, G. S. McCarty, R. M. Wightman, Carbon microelectrodes with a renewable surface. Anal. Chem. 82(5), 2020–2028 (2010)

    Article  Google Scholar 

  30. J. J. VanDersarl, A. Mercanzini, P. Renaud, Integration of 2D and 3D thin film glassy carbon electrode arrays for electrochemical dopamine sensing in flexible Neuroelectronic implants. Adv. Funct. Mater. 25(1), 78–84 (2015)

    Article  Google Scholar 

  31. C. Wang, G. Jia, L. H. Taherabadi, M. J. Madou, A novel method for the fabrication of high-aspect ratio C-MEMS structures. Microelectromechanical Systems, Journal of 14(2), 348–358 (2005)

    Article  Google Scholar 

  32. S. Xi, T. Shi, D. Liu, L. Xu, H. Long, W. Lai, Z. Tang, Integration of carbon nanotubes to three-dimensional C-MEMS for glucose sensors. Sensors Actuators A Phys. 198, 15–20 (2013)

    Article  Google Scholar 

  33. H. Xu, K. Malladi, C. Wang, L. Kulinsky, M. Song, M. Madou, Carbon post-microarrays for glucose sensors. Biosens. Bioelectron. 23(11), 1637–1644 (2008)

    Article  Google Scholar 

  34. Y. Yang, A. A. Ibrahim, J. L. Stockdill, P. Hashemi, A density-controlled scaffolding strategy for covalent functionalization of carbon-fiber microelectrodes. Anal. Methods 7(17), 7352–7357 (2015)

    Article  Google Scholar 

  35. M. K. Zachek, A. Hermans, R. M. Wightman, G. S. McCarty, Electrochemical dopamine detection: comparing gold and carbon fiber microelectrodes using background subtracted fast scan cyclic voltammetry. J. Electroanal. Chem. 614(1), 113–120 (2008)

    Article  Google Scholar 

  36. M. K. Zachek, P. Takmakov, B. Moody, R. M. Wightman, G. S. McCarty, Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry. Anal. Chem. 81(15), 6258–6265 (2009)

    Article  Google Scholar 

  37. M. K. Zachek, J. Park, P. Takmakov, R. M. Wightman, G. S. McCarty, Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. Analyst 135(7), 1556–1563 (2010)

    Article  Google Scholar 

  38. A. G. Zestos, M. D. Nguyen, B. L. Poe, C. B. Jacobs, B. J. Venton, Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes. Sensors Actuators B Chem. 182, 652–658 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The device was fabricated using Nano Fabrication Core (nFab) at Wayne State University. We acknowledge the staff support during the device fabrication. This work was supported by NSF CAREER Award (1055932).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Ming-Cheng Cheng.

Additional information

Wenwen Yi and Yuanyuan Yang contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yi, W., Yang, Y., Hashemi, P. et al. 3D carbon nanofiber microelectrode arrays fabricated by plasma-assisted pyrolysis to enhance sensitivity and stability of real-time dopamine detection. Biomed Microdevices 18, 112 (2016). https://doi.org/10.1007/s10544-016-0136-1

Download citation

Keywords

  • Carbon nanofiber
  • Plasma-assisted pyrolysis
  • Dopamine
  • FSCV