Biomedical Microdevices

, 18:106 | Cite as

Fabrication of self-expandable NiTi thin film devices with micro-electrode array for bioelectric sensing, stimulation and ablation

  • Christoph Bechtold
  • Rodrigo Lima de Miranda
  • Christoph Chluba
  • Eckhard Quandt


Self-expandable medical devices provide mechanical functionality at a specific location of the human body and are viable for minimal invasive procedures. Besides radiopaque markers and drug-eluting coatings, next generation self-expandable devices can be equipped with additional functionality, such as conductive and flexible electrodes, which enables chronic recording of bioelectrical signals, stimulating or ablating tissue. This promises new therapeutic options in various medical fields, among them in particular neuromodulation (e.g. deep brain stimulation), BioMEMS, radio frequency ablation, mapping or denervation. However, the fabrication of such multi-functional devices is challenging. For this study we have realized a 35 μm thick, superelastic NiTi thin film stent structure with six isolated electrodes on the outer circumference, each electrode connected to a contact pad at the end of the stent structure, using magnetron sputtering, UV lithography and wet chemical etching. Mechanical and electrical properties of the device during typical loading conditions, i.e. crimping, simulated pulsatile and electrochemical testing, were characterized and reveal promising results. For the fabrication of future multifunctional, minimal invasive medical devices, such as electroceuticals or other intelligent implants, NiTi thin film technology is therefore a versatile alternative to conventional fabrication routes.


Nitinol Medical devices Micro electrodes Superelastic Shape memory Bioelectric sensing Stimulation 


  1. C. Bechtold, R. Lima de Miranda, E. Quandt, Superelasticity. Shap. Mem. (2015). doi: 10.1007/s40830-015-0029-9 Google Scholar
  2. L.S. Castleman, S.M. Motzkin, F.P. Alicandri, V.L. Bonawit, A.A. Johnson, J. Biomed. Mater. Res. 10(5), 695 (1976)CrossRefGoogle Scholar
  3. M. Castro, A.S. Rubin, M. Laviolette, J. Fitermann, M. De Andrade Lima et al., Am. J. Respir. Crit. Care Med. 182, 2 116 (2010)Google Scholar
  4. K.C. Cheung, P. Renaud, H. Tanila, K. Djupsund, Biosen. Bioelectron. 22(8), 1783 (2007)CrossRefGoogle Scholar
  5. J.W.C. de Vries, J. Phys. Met. Phys. 17, 1945 (1987)CrossRefGoogle Scholar
  6. T.W. Duerig, M. Wholey, Minim. Invasive Ther. Allied Tech. 11(4), 173 (2002)Google Scholar
  7. H. Fischer, B. Vogel, A. Welle, Minim. Invasive Ther. Allied Tech. 13(4), 248 (2004)CrossRefGoogle Scholar
  8. L.A. Geddes, Annal. Biomed. Eng. 25(1), 14 (1997)CrossRefGoogle Scholar
  9. T. Habijan, R.L. De Miranda, C. Zamponi, E. Quandt, C. Greulich, T.A. Schildhauer, M. Köller, Mater. Sci. Eng. C 32(8), 2523 (2012)CrossRefGoogle Scholar
  10. C. Henle, M. Raab, J.G. Cordeiro, S. Doostkam, A. Schulze-Bonhage, T. Stieglitz, J. Rickert, Biomed. Microdevices 13(1), 59 (2011)CrossRefGoogle Scholar
  11. B.A. Hollenberg, C.D. Richards, R. Richards, D.F. Bahr, D.M. Rector, J. Neurosci. Meth. 153(1), 147 (2006)CrossRefGoogle Scholar
  12. B.-J. Kim, Y. Cho, M.-S. Jung, H.-A.-S. Shin, M.-W. Moon, H.N. Han, K.T. Nam, Y.-C. Joo, I.-S. Choi, Small 8(21), 3300 (2012)CrossRefGoogle Scholar
  13. B. Li, T. Steigauf, P. McIntyre, D. Sorensen, in Medical Device Materials V, Proceedings from the Materials & Processes for Medical Devices Conference 2009 (ASM International) p. 111Google Scholar
  14. R. Lima de Miranda, C. Zamponi, E. Quandt, Adv. Eng. Mater. 15(1–2), 66 (2013)CrossRefGoogle Scholar
  15. R. Lima de Miranda, T. Scheuermann, PCT/EP2015/052026Google Scholar
  16. T.J. Oxley, N.L. Opie, S.E. John, G.S. Rind, S.M. Ronayne et al., Nat. Biotechnol. 3428, 1 (2016)Google Scholar
  17. B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, J. Neural Eng. 6, 036003 (2009)CrossRefGoogle Scholar
  18. J. Ryhänen, Minim. Invasiv. Ther. 9(2), 99–105 (2000)Google Scholar
  19. M. Schuettler, Proc. IEEE EMBS. ThB08.6 (2007)Google Scholar
  20. G. Siekmeyer, A. Schüßler, R. Lima de Miranda, E. Quandt, JMEPEG 23, 2437 (2014)CrossRefGoogle Scholar
  21. D. Stoeckel, Minim. Invasiv. Ther. 9(2), 81 (2000)Google Scholar
  22. D. Stoeckel, A.R. Pelton, T.W. Duerig, in Shape Memory Alloys for Biomedical Applications, ed. by T. Yoneyama, S. Miyazaki (CRC Woodhead Publishing, 2009) pp. 237–256Google Scholar
  23. A. Vanhoestenberghe, N. Donaldson, J. Neural Eng. 10, 031002 (2013)CrossRefGoogle Scholar
  24. M.E. Wechsler, M. Laviolette, A.S. Rubin, J. Fiterman, J.R. Lapa e Silva et al., J. Allerg. Clin. Immunol. 132(6), 1295 (2013)Google Scholar
  25. M. Wohlschlögel, R. Lima de Miranda, A. Schüßler, E. Quandt, J. Biomed. Mater. Res. B. 104(6), 1176 (2016)Google Scholar
  26. J.D. Yeager, D.J. Phillips, D.M. Rector, D.F. Bahr, J. Neurosci. Meth. 173(2), 279 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Acquandas GmbHKielGermany
  2. 2.Institute for Materials Science, Faculty of EngineeringUniversity of KielKielGermany

Personalised recommendations