Advertisement

Biomedical Microdevices

, 18:97 | Cite as

Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization

  • Rakesh Khilwani
  • Peter J. Gilgunn
  • Takashi D. Y. Kozai
  • Xiao Chuan Ong
  • Emrullah Korkmaz
  • Pallavi K. Gunalan
  • X. Tracy Cui
  • Gary K. Fedder
  • O. Burak OzdoganlarEmail author
Article

Abstract

Stable chronic functionality of intracortical probes is of utmost importance toward realizing clinical application of brain-machine interfaces. Sustained immune response from the brain tissue to the neural probes is one of the major challenges that hinder stable chronic functionality. There is a growing body of evidence in the literature that highly compliant neural probes with sub-cellular dimensions may significantly reduce the foreign-body response, thereby enhancing long term stability of intracortical recordings. Since the prevailing commercial probes are considerably larger than neurons and of high stiffness, new approaches are needed for developing miniature probes with high compliance. In this paper, we present design, fabrication, and in vitro evaluation of ultra-miniature (2.7 μm x 10 μm cross section), ultra-compliant (1.4 × 10-2 μN/μm in the axial direction, and 2.6 × 10-5 μN/μm and 1.8 × 10-6 μN/μm in the lateral directions) neural probes and associated probe-encasing biodissolvable delivery needles toward addressing the aforementioned challenges. The high compliance of the probes is obtained by micron-scale cross-section and meandered shape of the parylene-C insulated platinum wiring. Finite-element analysis is performed to compare the strains within the tissue during micromotion when using the ultra-compliant meandered probes with that when using stiff silicon probes. The standard batch microfabrication techniques are used for creating the probes. A dissolvable delivery needle that encases the probe facilitates failure-free insertion and precise placement of the ultra-compliant probes. Upon completion of implantation, the needle gradually dissolves, leaving behind the ultra-compliant neural probe. A spin-casting based micromolding approach is used for the fabrication of the needle. To demonstrate the versatility of the process, needles from different biodissolvable materials, as well as two-dimensional needle arrays with different geometries and dimensions, are fabricated. Further, needles incorporating anti-inflammatory drugs are created to show the co-delivery potential of the needles. An automated insertion device is developed for repeatable and precise implantation of needle-encased probes into brain tissue. Insertion of the needles without mechanical failure, and their subsequent dissolution are demonstrated. It is concluded that ultra-miniature, ultra-compliant probes and associated biodissolvable delivery needles can be successfully fabricated, and the use of the ultra-compliant meandered probes results in drastic reduction in strains imposed in the tissue as compared to stiff probes, thereby showing promise toward chronic applications.

Keywords

Brain-computer interfaces Neural probes Flexible probes Dissolvable polymer microneedles Micromolding Micromotion Microelectrode 

Notes

Acknowledgments

The authors would like to thank Prof. Shawn Lister and Pratiti Mandal for assistance with Xradia UltraXRM-L200 for nano-CT images. This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) Biological Technologies Office (BTO) Electrical Prescriptions (ElectRx) program under the auspices of Dr. Douglas J. Weber through the Space and Naval Warfare Systems Center (SPAWAR) – Pacific, Cooperative Agreement No. HR0011-15-2-0009 and Microsystems Technology Office (MTO) under the auspices of Dr. Jack Judy through the SPAWAR, Pacific Award No. N66001-11-1-4025. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of SPAWAR or DARPA.

References

  1. J. Agorelius, F. Tsanakalis, A. Firgber, P.T. Thorbergsson, L.M.E. Pettersson, J. Schouenborg, Front. Neurosci. 9, 331 (2015)CrossRefGoogle Scholar
  2. N.A. Alba, Z. Du, K. Catt, T.D.Y. Kozai, X.T. Cui, Biosensors 5(4), 618–646 (2015)CrossRefGoogle Scholar
  3. J. Bartels, D. Andreasen, P. Ehirim, H. Mao, S. Seibert, E.J. Wright, P. Kennedy, J. Neurosci. Meth. 174(2), 168–176 (2008)CrossRefGoogle Scholar
  4. B. Bediz, E. Korkmaz, R. Khilwani, C. Donahue, G. Erdos, L.D. Falo Jr., O.B. Ozdoganlar, Pharm. Res. 31(1), 117–135 (2014)CrossRefGoogle Scholar
  5. R. Biran, D.C. Martin, P.A. Tresco, Exp. Neurol. 195(1), 115–126 (2005)CrossRefGoogle Scholar
  6. C.S. Bjornsson, S.J. Oh, Y.A. Al-Kofahi, Y.J. Lim, J.N. Turner, S. De, B. Roysam, W. Shain, S.J. Kim, J. Neural Eng. 3(3), 196–207 (2006)CrossRefGoogle Scholar
  7. E.N. Brown, L.M. Frank, D. Tang, M.C. Quirk, M.A. Wilson, J. Neurosci. 18(18), 7411–7425 (1998)Google Scholar
  8. J.R. Capadona, K. Shanmuganathan, D.J. Tyler, S.J. Rowan, C. Weder, Science 319(5868), 1370–1374 (2008)CrossRefGoogle Scholar
  9. F. Casanova, P.R. Carney, M. Sarntinoranont, J. Neurosci. Methods 237, 79–89 (2014)CrossRefGoogle Scholar
  10. H.Y. Chan, Aslan, D. M. Aslam, S.H. Wang, G.M. Swain, K.D. Wise, MEMS 2008 – IEEE 21st International Conference on Micro Electro Mechanical Systems, 244–247(2008)Google Scholar
  11. H.Y. Chan, M. Varney, S. Hatch, D. M. Aslam, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 1202-1205 (2009)Google Scholar
  12. H.Y. Chan, D.M. Aslam, J.A. Wiler, B. Casey, J. Microelectromech. Syst. 18(3), 511–521 (2009b)CrossRefGoogle Scholar
  13. Z.J. Chen, G.T. Gillies, W.C. Broaddus, S.S. Prabhu, H. Fillmore, R.M. Mitchell, F.D. Corwin, P.P. Fatouros, J. Neurosurg. 101(2), 314–322 (2004)CrossRefGoogle Scholar
  14. C.H. Chen, S.C. Chuang, H.C. Su, W.L. Hsu, T.R. Yew, Y.C. Chang, S.R. Yeh, D.J. Yao, Lab Chip 11(9), 1647–1655 (2011)CrossRefGoogle Scholar
  15. K.C. Cheung, K. Djupsund, Y. Dan, L.P. Lee, J. Microelectromech. Syst. 12(2), 179–184 (2003)CrossRefGoogle Scholar
  16. K.L. Drake, K.D. Wise, J. Farraye, D.J. Anderson, S.L. BeMent, IEEE Trans. Biomed. Eng. 35(9), 719–732 (1988)CrossRefGoogle Scholar
  17. I.D. Dryg, M.P. Ward, K.Y. Qing, H. Mei, J.E. Schaffer, P.P. Irazoqui, IEEE Trans. Neural Syst. Rehabil. Eng. 23(4), 562–571 (2015)CrossRefGoogle Scholar
  18. T. Escamilla-Mackert, N.B. Langhals, T.D.Y. Kozai, D.R. Kipke, Ann. Int. IEEE EMBS Conf. 1616-1618 (2009)Google Scholar
  19. W. Fan, I. Maesoon, Y. Euisik, 2011 I.E. 16th International Conference on Solid-State Sensors, Actuators and Microsystems, 966–969 (2011)Google Scholar
  20. G. K. Fedder, B. Ozdoganlar, P. J. Gilgunn, US Patent 9,241,651, (2016)Google Scholar
  21. E.E. Fetz, D.V. Finocchio, Exp. Brain Res. 23(3), 217–240 (1975)CrossRefGoogle Scholar
  22. S. Filiz, C.M. Conley, M.B. Wasserman, O.B. Ozdoganlar, Int. J. Mach. Tools Manuf. 47(7), 1088–1100 (2007)CrossRefGoogle Scholar
  23. S. Filiz, L. Xie, L.E. Weiss, O.B. Ozdoganlar, Int. J. Mach. Tools Manuf. 48(3), 459–472 (2008)CrossRefGoogle Scholar
  24. C. P. Foley, K. B. Neeves, W. M. Saltzman, W. L. Olbricht, AIChE Annual Meeting (2006)Google Scholar
  25. A.P. Georgopoulos, A.B. Schwartz, R.E. Kettner, Science 233(4771), 1416–1419 (1986)CrossRefGoogle Scholar
  26. P. J. Gilgunn, R. Khilwani, T. D. Y. Kozai, D. J. Weber, X. T. Cui, G. Erdos, O.B. Ozdoganlar, G.K. Fedder, 2012 I.E. 25th International Conference on Micro Electro Mechanical Systems (MEMS), 56-59 (2012)Google Scholar
  27. A. Gilletti, J. Muthuswamy, J. Neural Eng. 3(3), 189–195 (2006)CrossRefGoogle Scholar
  28. M.D. Johnson, O.E. Kao, D.R. Kipke, J. Neurosci. Meth. 160(2), 276–287 (2007)CrossRefGoogle Scholar
  29. W.J. Kargo, D.A. Nitz, J. Neurosci. 23(35), 11255–11269 (2003)Google Scholar
  30. L. Karumbaiah, S.E. Norman, N.B. Rajan, S. Anand, T. Saxena, M. Betancur, R. Patkar, R.V. Bellamkonda, Biomaterials 33(26), 5983–5996 (2012)CrossRefGoogle Scholar
  31. P. Kennedy, S.S. Mirra, R.A.E. Bakay, Neurosci. Lett. 142(1), 89–94 (1992)CrossRefGoogle Scholar
  32. D.H. Kim, D.C. Martin, Biomaterials 27(15), 3031–3037 (2006)CrossRefGoogle Scholar
  33. Y.T. Kim, R.W. Hitchcock, M.J. Bridge, P.A. Tresco, Biomaterials 25(12), 2229–2237 (2004)CrossRefGoogle Scholar
  34. C.L. Kolarcik, S.D. Leubben, S.A. Sapp, J. Hanner, N. Snyder, T.D.Y. Kozai, E. Chang, J.A. Nabity, S.T. Nabity, C.F. Lagenaur, X.T. Cui, Soft Matter 11(24), 4547–4861 (2015a)CrossRefGoogle Scholar
  35. C.L. Kolarcik, K. Catt, E. Rost, I.N. Albrecht, D. Bourbeau, Z. Du, T.D.Y. Kozai, X. Luo, D.J. Weber, X.T. Cui, J. Neural Eng. 12(1), 016008 (2015b)CrossRefGoogle Scholar
  36. E. Korkmaz, MS Dissertation, Bilkent University (2011), http://hdl.handle.net/11693/15171
  37. E. Korkmaz, E.E. Friedrich, M.H. Ramadan, G. Erdos, A.R. Mathers, O.B. Ozdoganlar, N.R. Washburn, L.D. Falo, Acta Biomater. 24, 96–105 (2015a)CrossRefGoogle Scholar
  38. E. Korkmaz, E. E. Friedrich, M. H. Ramadan, G. Erdos, A. R. Mathers, O. B. Ozdoganlar, N. R. Washburn, L. D. Falo, Accept. J. Pharmaceut. Sci. (2015)Google Scholar
  39. T.D.Y. Kozai, D.R. Kipke, J. Neurosci. Meth. 184(2), 199–205 (2009)CrossRefGoogle Scholar
  40. T.D.Y. Kozai, A.L. Vazquez, J. Mater. Chem. B 3, 4965–4978 (2015)CrossRefGoogle Scholar
  41. T.D.Y. Kozai, T.C. Marzullo, N.B. Langhals, F.M. Hooi, A.K. Majewska, E.B. Brown, D.R. Kipke, J. Neural Eng. 7(4), 046011 (2010)CrossRefGoogle Scholar
  42. T.D.Y. Kozai, A.L. Vazquez, C.L. Weaver, S.G. Kim, X.T. Cui, J. Neural Eng. 9(6), 066001 (2012a)CrossRefGoogle Scholar
  43. T.D.Y. Kozai, N.B. Langhals, P.R. Patel, X. Deng, H. Zhang, K.L. Smith, J. Lahann, N.A. Kotov, D.R. Kipke, Nat. Mater. 11(12), 1065–1073 (2012b)CrossRefGoogle Scholar
  44. T.D.Y. Kozai, N.A. Alba, H. Zhang, N.A. Kotov, R.A. Gaunt, X.T. Cui, in Nanotechnology and neuroscience: nano-electronic, photonic and mechanical neuronal interfacing, ed. by M.D. Vittorio, L. Martiradonna, J. Assad (Springer, New York, 2014a), pp. 71–134CrossRefGoogle Scholar
  45. T.D.Y. Kozai, X. Li, L.M. Bodily, E.M. Caparosa, G.A. Zenonos, D.L. Carlisle, R.M. Friedlander, X.T. Cui, Biomaterials 35(36), 9620–9634 (2014b)CrossRefGoogle Scholar
  46. T.D.Y. Kozai, Z. Gugel, X. Li, P.J. Gilgunn, R. Khilwani, O.B. Ozdoganlar, G.K. Fedder, D.J. Weber, X.T. Cui, Biomaterials 35(34), 9255–9268 (2014c)CrossRefGoogle Scholar
  47. T.D.Y. Kozai, Z. Du, Z.V. Gugel, M.A. Smith, S.M. Chase, L.M. Bodily, E.M. Caparosa, R.M. Friedlander, X.T. Cui, J. Neurosci. Meth. 242, 15–40 (2015a)CrossRefGoogle Scholar
  48. T.D.Y. Kozai, K. Catt, X. Li, Z.V. Gugel, V.T. Olafsson, A.L. Vazquez, X.T. Cui, Biomaterials 37, 25–39 (2015b)CrossRefGoogle Scholar
  49. T.D.Y. Kozai, A. Jaquins-Gerstl, A.L. Vazquez, A.C. Michael, X.T. Cui, ACS Chem. Neurosci. 6(1), 48–67 (2015c)CrossRefGoogle Scholar
  50. T.D.Y. Kozai, K. Catt, Z. Du, K. Na, O. Srivannavit, R.M. Haque, J. Seymour, K.D. Wise, E. Yoon, X.T. Cui, IEEE Trans. Biomed. Eng. 63(1), 111–119 (2016a)CrossRefGoogle Scholar
  51. T.D.Y. Kozai, A. Jaquins-Gerstl, A.L. Vazquez, A.C. Michael, X.T. Cui, Biomaterials 87, 157–169 (2016b)CrossRefGoogle Scholar
  52. T.D.Y. Kozai, J.R. Eles, A.L. Vazquez, X.T. Cui, J. Neurosci. Meth. 258, 46–55 (2016c)CrossRefGoogle Scholar
  53. A. Lecomte, V. Castagnola, E. Descamps, L. Dahan, M.C. Blatché, T.M. Dinis, E. Leclerc, C. Egles, C. Bergaud, J. Micromech. Microeng. 25(12), 125003 (2015)CrossRefGoogle Scholar
  54. K.K. Lee, J.P. He, A. Singh, S. Massia, G. Ehteshami, B. Kim, G. Raupp, J. Micromech. Microeng. 14(1), 32–37 (2003)CrossRefGoogle Scholar
  55. H. Lee, R.V. Bellamkonda, W. Sun, M.E. Levenston, J. Neural Eng. 2(4), 81–89 (2005)CrossRefGoogle Scholar
  56. C.D. Lee, S.A. Hara, L. Yu, J.T.W. Kuo, B.J. Kim, T. Hoang, V. Pikov, E. Meng, J. Biomed. Mater. Res. Part B: Appl. Biomater. 104(2), 357–268 (2016)CrossRefGoogle Scholar
  57. D. Lewitus, K.L. Smith, W. Shain, J. Kohn, Acta Biomater. 7(6), 2483–2491 (2011)CrossRefGoogle Scholar
  58. G. Lind, C.E. Linsmeier, J. Thelin, J. Schouenborg, J. Neural Eng. 7(4), 046005 (2010)CrossRefGoogle Scholar
  59. X. Liu, D.B. McCreery, L.A. Bullara, W.F. Agnew, IEEE Trans. Neural Syst. Rehabil. Eng. 14(1), 91–100 (2006)CrossRefGoogle Scholar
  60. M.C. Lo, S. Wang, S. Singh, V.B. Damodaran, H.M. Kaplan, J. Kohn, D.I. Shreiber, J.D. Zahn, Biomed. Microdevices 17(2), 1–11 (2015)CrossRefGoogle Scholar
  61. X. Luo, C. Matranga, S. Tan, N. Alba, X.T. Cui, Biomaterials 32(26), 6316–6323 (2011)CrossRefGoogle Scholar
  62. N.T. Markwardt, J. Stokol, R.L.R. Ii, J. Neurosci. Methods 214(2), 119–125 (2013)CrossRefGoogle Scholar
  63. P.T. McCarthy, K.J. Otto, M.P. Rao, Biomed. Microdevices 13(3), 503–515 (2011a)CrossRefGoogle Scholar
  64. P.T. McCarthy, M.P. Rao, K.J. Otto, J. Neural Eng. 8(4), 046007 (2011b)CrossRefGoogle Scholar
  65. G.C. McConnell, H.D. Rees, A.I. Levey, C.A. Gutekunst, R.E. Gross, R.V. Bellamkonda, J. Neural Eng. 6(5), 056003 (2009)CrossRefGoogle Scholar
  66. D. McCreery, A. Lossinsky, V. Pikov, X. Liu, IEEE Trans. Biomed. Eng. 53(4), 726–737 (2006)CrossRefGoogle Scholar
  67. M.T.C. McCrudden, A.Z. Alkilani, C.M. McCrudden, E. McAlister, H.O. McCarthy, A.W. Woolfson, R.F. Donnelly, J. Control. Release 180, 71–78 (2014)CrossRefGoogle Scholar
  68. S. Metz, A. Bertsch, D. Bertrand, P. Renaud, Biosens. Bioelectron. 19(10), 1309–1318 (2004)CrossRefGoogle Scholar
  69. J.T. Neary, Y. Kang, K.A. Willoughby, E.F. Ellis, J. Neurosci. 23(6), 2348–2356 (2003)Google Scholar
  70. J.K. Nguyen, D.J. Park, J.L. Skousen, A.E. Hess-Dunning, D.J. Tyler, S.J. Rowan, C. Weder, J.R. Capadona, J. Neural Eng. 11(5), 056014 (2014)CrossRefGoogle Scholar
  71. M.A. Nicolelis, D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew, J.D. Kralik, S.P. Wise, Proc. Natl. Acad. Sci. U. S. A. 100(19), 11041–11046 (2003)CrossRefGoogle Scholar
  72. D. P. O’Brien, T. R. Nichols, M. G. Allen, MEMS 2001-14th IEEE Int. Conf. Micro Electro Mech. Syst. 216–219 (2001)Google Scholar
  73. P. R. Patel, H. Zhang, M. Robbins, J. Nofar, S. Marshal, M. Kobylarek, T. D. Y. Kozai, N. A. Kotov, C. A. Chestek, J. Neural Eng. 13(6), 066002 (2016)Google Scholar
  74. C. Pang, J.G. Cham, Z. Nenadic, S. Musallam, Y.C. Tai, J.W. Burdick, R.A. Andersen, Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 7114–7117 (2005)Google Scholar
  75. P.R. Patel, K. Na, H. Zhang, T.D.Y. Kozai, N.A. Kotov, C.A. Chestek, J. Neural Eng. 12(4), 046009 (2015)CrossRefGoogle Scholar
  76. V.S. Polikov, P.A. Tresco, W.M. Reichert, J. Neurosci. Methods 148(1), 1–18 (2005)CrossRefGoogle Scholar
  77. P.J. Rousche, R.A. Normann, J. Neurosci. Methods 82(1), 1–15 (1998)CrossRefGoogle Scholar
  78. A.J. Sawyer, T.R. Kyriakides, J. Neural Eng. 10(1), 016013 (2013)CrossRefGoogle Scholar
  79. A.B. Schwartz, D.W. Moran, Eur. J. Neurosci. 12(6), 1851–1856 (2000)CrossRefGoogle Scholar
  80. A.B. Schwartz, X.T. Cui, D.J. Weber, D.W. Moran, Neuron 52(1), 205–220 (2006)CrossRefGoogle Scholar
  81. J.P. Seymour, D.R. Kipke, Biomaterials 28(25), 3594–3607 (2007)CrossRefGoogle Scholar
  82. J.P. Seymour, Y.M. Elkasabi, H.Y. Chen, J. Lahann, D.R. Kipke, Biomaterials 30(31), 6158–6167 (2009)CrossRefGoogle Scholar
  83. W. Shain, L. Spataro, J. Dilgen, K. Haverstick, S. Retterer, M. Isaacson, M. Stalzman, J.N. Turner, IEEE Trans. Neural. Syst. Rehabil. Eng. 11(2), 186–188 (2003)CrossRefGoogle Scholar
  84. W. Shen, L. Karumbaiah, X. Liu, T. Saxena, S. Chen, R. Patkar, R.V. Bellamkonda, M.G. Allen, Microsyst. Nanoeng. 1, 15010 (2015)CrossRefGoogle Scholar
  85. L. Spataro, J. Dilgen, S. Retterer, A.J. Spence, M. Isaacson, J.N. Turner, W. Shain, Exp. Neurol. 194(2), 289–300 (2005)CrossRefGoogle Scholar
  86. J. Subbaroyan, D.C. Martin, D.R. Kipke, J. Neural Eng. 2(4), 103–113 (2005)CrossRefGoogle Scholar
  87. S. Suner, M.R. Fellows, C. Vargas-Irwin, G.K. Nakata, J.P. Donoghue, IEEE Trans. Neural. Syst. Rehabil. Eng. 13(4), 524–541 (2005)CrossRefGoogle Scholar
  88. T. Suzuki, K. Mabuchi, S. Takeuchi, Int IEEE EMBS Conf Neural Eng, 154–156 (2003)Google Scholar
  89. D.H. Szarowski, M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, W. Shain, Brain Res. 983(1), 23–35 (2003)CrossRefGoogle Scholar
  90. D.M. Taylor, S.I. Tillery, A.B. Schwartz, Science 296(5574), 1829–1832 (2002)CrossRefGoogle Scholar
  91. B.A. Wester, R.H. Lee, M.C. LaPlaca, J. Neural Eng. 6(2), 024002 (2009)CrossRefGoogle Scholar
  92. Z. Xiang, S.C. Yen, N. Xue, T. Sun, W.M. Tsang, S. Zhang, L.D. Liao, N.V. Thakor, C. Lee, J. Micromech. Microeng. 24(6), 065015 (2014)CrossRefGoogle Scholar
  93. H. Yoon, C.S. Smith, V.K. Varadan, J. Nanotechnol. Eng. Med. 2(3), 031001 (2011)CrossRefGoogle Scholar
  94. M. Zhang, J. Wu, L. Wang, K. Xiao, W. Wen, Lab Chip 10(9), 1199–1203 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rakesh Khilwani
    • 1
  • Peter J. Gilgunn
    • 2
  • Takashi D. Y. Kozai
    • 3
    • 4
    • 5
    • 6
  • Xiao Chuan Ong
    • 2
  • Emrullah Korkmaz
    • 1
  • Pallavi K. Gunalan
    • 7
  • X. Tracy Cui
    • 3
    • 4
    • 5
  • Gary K. Fedder
    • 1
    • 2
    • 7
    • 8
  • O. Burak Ozdoganlar
    • 1
    • 7
    • 9
    Email author
  1. 1.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  4. 4.Center for the Neural Basis of CognitionUniversity of PittsburghPittsburghUSA
  5. 5.McGowan Institute of Regenerative MedicineUniversity of PittsburghPittsburghUSA
  6. 6.NeuroTech Center, University of Pittsburgh Brain InstituteUniversity of PittsburghPittsburghUSA
  7. 7.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  8. 8.The Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  9. 9.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations