Skip to main content
Log in

Practical fabrication of microfluidic platforms for live-cell microscopy

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We describe a simple fabrication technique – targeted towards non-specialists – that allows for the production of leak-proof polydimethylsiloxane (PDMS) microfluidic devices that are compatible with live-cell microscopy. Thin PDMS base membranes were spin-coated onto a glass-bottom cell culture dish and then partially cured via microwave irradiation. PDMS chips were generated using a replica molding technique, and then sealed to the PDMS base membrane by microwave irradiation. Once a mold was generated, devices could be rapidly fabricated within hours. Fibronectin pre-treatment of the PDMS improved cell attachment. Coupling the device to programmable pumps allowed application of precise fluid flow rates through the channels. The transparency and minimal thickness of the device enabled compatibility with inverted light microscopy techniques (e.g. phase-contrast, fluorescence imaging, etc.). The key benefits of this technique are the use of standard laboratory equipment during fabrication and ease of implementation, helping to extend applications in live-cell microfluidics for scientists outside the engineering and core microdevice communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • C. W. Beh, W. Zhou, T. H. Wang, Lab. Chip 12(20), 4120–4127 (2012)

    Article  Google Scholar 

  • Q. Chen, G. Li, Y. Nie, S. Yao, J. Zhao, Microfluid. Nanofluid. 16(1), 83–90 (2014)

    Article  Google Scholar 

  • S. I. Ertel, B. D. Ratner, A. Kaul, M. B. Schway, T. A. Horbett, J. Biomed. Mater. Res 28(6), 667–675 (1994)

    Article  Google Scholar 

  • B. T. Ginn, O. Steinbock, Langmuir 19(19), 8117–8118 (2003)

    Article  Google Scholar 

  • M. W. Grol, A. Pereverzev, S. M. Sims, S. J. Dixon, J. Cell Sci 126(Pt 16), 3615–3626 (2013)

    Article  Google Scholar 

  • P. G. Gross, E. P. Kartalov, A. Scherer, L. P. Weiner, J. Neurol. Sci 252(2), 135–143 (2007)

    Article  Google Scholar 

  • K. Haubert, T. Drier, D. Beebe, Lab. Chip 6(12), 1548–1549 (2006)

    Article  Google Scholar 

  • P. M. Hinderliter, K. R. Minard, G. Orr, W. B. Chrisler, B. D. Thrall, J. G. Pounds, J. G. Teeguarden, Part. Fibre Toxicol 7(1), 36 (2010)

    Article  Google Scholar 

  • A. Y. Hui, G. Wang, B. Lin, W. T. Chan, Lab. Chip 5(10), 1173–1177 (2005)

    Article  Google Scholar 

  • A. Konda, J. M. Taylor, M. A. Stoller, S. A. Morin, Lab. Chip 15(9), 2009–2017 (2015)

    Article  Google Scholar 

  • E. Leclerc, B. David, L. Griscom, B. Lepioufle, T. Fujii, P. Layrolle, C. Legallaisa, Biomaterials 27(4), 586–595 (2006)

    Article  Google Scholar 

  • Y. Lee, J. M. Lee, P. K. Bae, I. Y. Chung, B. H. Chung, B. G. Chung, Electrophoresis 36(7–8), 994–1001 (2015)

    Article  Google Scholar 

  • G.H. Lee, J.S. Lee, X. Wang and S. Hoon Lee, Adv Healthc Mater 5(1), 56–74 (2016)

  • K. Loutherback, L. Chen and H.Y. Holman, Anal. Chem. 87(9), 4601–4606 (2015)

  • I. Meyvantsson, D. J. Beebe, Annu. Rev. Anal. Chem. 1, 423–449 (2008)

    Article  Google Scholar 

  • K. M. Miller, J. M. Anderson, J. Biomed. Mater. Res 22(8), 713–731 (1988)

    Article  Google Scholar 

  • C. Moraes, M. Likhitpanichkul, C. J. Lam, B. M. Beca, Y. Sun, C. A. Simmons, Integr. Biol. 5(4), 673–680 (2013)

    Article  Google Scholar 

  • W. J. Polacheck, R. Li, S. G. Uzel, R. D. Kamm, Lab. Chip 13(12), 2252–2267 (2013)

    Article  Google Scholar 

  • M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S. R. Quake, Science 288(5463), 113–116 (2000)

    Article  Google Scholar 

  • B. D. Wheal, R. J. Beach, N. Tanabe, S. J. Dixon, S. M. Sims, J. Bone Miner. Res 29(3), 725–734 (2014)

    Article  Google Scholar 

  • S. Yasotharan, S. Pinto, J. G. Sled, S.-S. Bolz, A. Gunther, Lab. Chip 15(12), 2660–2669 (2015)

    Article  Google Scholar 

  • E. W. Young, D. J. Beebe, Chem. Soc. Rev. 39(3), 1036–1048 (2010)

    Article  Google Scholar 

  • H. Yu, G. Zhou, F. Chau, S. Sinha, Microsyst. Technol. 17(3), 443–449 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank members of Dixon, Sims, and Holdsworth labs for their contributions, as well as members of the Skeletal Biology and Robarts Imaging Laboratories for their support. We also thank Yoshiyuki Arai for the use of his PTA ImageJ software plugin, and Mike Kovach and colleagues from Horiba-Photon Technology International for valuable advice and infrastructure support. This work was funded by the Canadian Institutes of Health Research (CIHR) grant number 126065. D. Lorusso is supported by an Ontario Graduate Scholarship and a Transdisciplinary Bone & Joint Training Award from the Collaborative Training Program in Musculoskeletal Health Research. N.M. Ochotny was supported by a Postdoctoral Fellowship Award from The Arthritis Society and by the Joint Motion Program — a CIHR Strategic Training Program in Musculoskeletal Health Research and Leadership. D. W. Holdsworth holds the Dr. Sandy Kirkley Chair in Musculoskeletal Research at The University of Western Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lorusso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorusso, D., Nikolov, H.N., Milner, J.S. et al. Practical fabrication of microfluidic platforms for live-cell microscopy. Biomed Microdevices 18, 78 (2016). https://doi.org/10.1007/s10544-016-0101-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0101-z

Keywords

Navigation