Skip to main content
Log in

Improved synthesis and growth of graphene oxide for field effect transistor biosensors

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (RGO) has many advantages over graphene such as low-cost, aqueous processable and industrial-scalable. However, two main limitations that prevent the use of RGO in electronics are the high electrical resistance and large electrical resistance deviation between fabricated devices. This limits RGO’s use in biosensors, capacitors and other electronic devices. Herein, we present (1) a modified Hummer’s method to obtain large RGO flakes via in-situ size fractionation and (2) the novel growth of RGO which can bridge the gaps in-between existing RGO flakes. Together, these two processes reduced the electrical resistance drastically from 1.99E + 06 to 4.68E + 03 Ω/square and the standard deviation decreased from 80.5 % to 16.5 %. The RGO was then fabricated into a field-effect transistor biosensor. A 1 pmol to 100 nmol change in Cytochrome C protein corresponded to a 3 % change in electrical resistance. The reported improved RGO synthesis method and subsequent growth enable large-scale application of RGO in practical electronic devices such as biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • H. Bai, C. Li, X. Wang, G. Shi, J. Phys. Chem. C 115, 5545–5551 (2011)

    Article  Google Scholar 

  • H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463–470 (2008)

    Article  Google Scholar 

  • H. Chen, S. K. Lim, P. Chen, J. Huang, Y. Wang, A. Palaniappan, M. Platt, B. Liedberg, A. I. Y. Tok, Phys. Chem. Chem. Phys. 17, 3451–3456 (2015)

    Article  Google Scholar 

  • H. Chen, J. Huang, A. Palaniappan, Y. Wang, B. Liedberg, M. Platt, A. I. Y. Tok, Analyst 141, 2335–2346 (2016a)

    Article  Google Scholar 

  • H. Chen, P. Chen, J. Huang, R. Selegård, M. Platt, A. Palaniappan, D. Aili, A. I. Y. Tok, B. Liedberg, Anal. Chem. 88, 2994–2998 (2016b)

    Article  Google Scholar 

  • H. Chen, T. K. Choo, J. Huang, Y. Wang, Y. Liu, M. Platt, A. Palaniappan, B. Liedberg, A. I. Y. Tok, Mater. Des. 90, 852–857 (2016c)

    Google Scholar 

  • D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  • G. Eda, M. Chhowalla, Adv. Mater. 22, 2392–2415 (2010)

    Article  Google Scholar 

  • G. Eda, G. Fanchini, M. Chhowalla, Nat Nano 3, 270–274 (2008)

    Article  Google Scholar 

  • D. W. H. Fam, A. I. Y. Tok, A. Palaniappan, P. Nopphawan, A. Lohani, S. G. Mhaisalkar, Sensors Actuators B Chem. 138, 189–192 (2009)

    Article  Google Scholar 

  • D. W. H. Fam, A. Palaniappan, A. I. Y. Tok, B. Liedberg, S. M. Moochhala, Sensors Actuators B Chem. 157, 1–7 (2011)

    Article  Google Scholar 

  • S. Faulkner, K. Spilsbury, J. Harvey, A. Jackson, J. Huang, M. Platt, A. Tok, M. Nimmo, Eur. J. Appl. Physiol., 1–10 (2014). doi:10.1007/s00421-014-2851-8,

  • L. Gao, J. R. Guest, N. P. Guisinger, Nano Lett. 10, 3512–3516 (2010)

    Article  Google Scholar 

  • S. Gilje, S. Han, M. Wang, K. L. Wang, R. B. Kaner, Nano Lett. 7, 3394–3398 (2007)

    Article  Google Scholar 

  • C. Gong, M. Acik, R. M. Abolfath, Y. Chabal, K. Cho, J. Phys. Chem. C 116, 9969–9979 (2012)

    Article  Google Scholar 

  • S. R. Gray, M. Clifford, R. Lancaster, M. Leggate, M. Davies and M. A. Nimmo, Cytokine, 2009, 47, 98–102.

  • J. Gunho, C. Minhyeok, C. Chu-Young, K. Jin Ho, P. Woojin, L. Sangchul, H. Woong-Ki, K. Tae-Wook, P. Seong-Ju, H. Byung Hee, K. Yung Ho, L. Takhee, Nanotechnology 21, 175201 (2010)

    Article  Google Scholar 

  • Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 3, 563–568 (2008)

    Article  Google Scholar 

  • L. H. Hess, M. Jansen, V. Maybeck, M. V. Hauf, M. Seifert, M. Stutzmann, I. D. Sharp, A. Offenhäusser, J. A. Garrido, Adv. Mater. 23, 5045–5049 (2011)

    Article  Google Scholar 

  • S. Hou, S. Su, M. L. Kasner, P. Shah, K. Patel, C. J. Madarang, Chem. Phys. Lett. 501, 68–74 (2010)

    Article  Google Scholar 

  • J. Huang, M. Larisika, W. H. D. Fam, Q. He, M. A. Nimmo, C. Nowak, I. Y. A. Tok, Nanoscale 5, 2945–2951 (2013a)

    Article  Google Scholar 

  • J. Huang, J. Harvey, H. Chen, M. A. Nimmo and I. Y. A. Tok, Vilamoura, Portugal, 2013b.

  • J. Huang, J. Harvey, W. H. D. Fam, M. A. Nimmo, I. Y. A. Tok, Procedia Engineering 60, 195–200 (2013c)

    Article  Google Scholar 

  • J. Huang, J. Harvey, H. Chen, W. H. D. Fam, M. A. Nimmo and I. Y. A. Tok, Chinese Physics B, 2014a.

  • J. Huang, D. Fam, Q. He, H. Chen, D. Zhan, S. H. Faulkner, M. A. Nimmo, A. I. Yoong Tok, J. Mater. Chem. C 2, 109–114 (2014b)

    Article  Google Scholar 

  • J. Huang, H. Chen, W. Niu, D. W. H. Fam, A. Palaniappan, M. Larisika, S. H. Faulkner, C. Nowak, M. A. Nimmo, B. Liedberg and A. I. Y. Tok, RSC Advances, 2015, 5, 39245–39251.

  • J. Huang, M. Larisika, C. Nowak and I. Y. A. Tok, New Methods in Aqueous Graphene (Graphene Oxide) Synthesis for Biosensor Devices, Taylor & Francis Group, 2016, Submitted.

  • L. Jing, R. Y. Tay, H. Li, S. H. Tsang, J. Huang, D. Tan, B. Zhang, E. H. T. Teo, A. I. Y. Tok, Nanoscale 8, 11114–11122 (2016)

    Article  Google Scholar 

  • I. Jung, D. A. Dikin, R. D. Piner, R. S. Ruoff, Nano Lett. 8, 4283–4287 (2008)

    Article  Google Scholar 

  • I. N. Kholmanov, M. D. Stoller, J. Edgeworth, W. H. Lee, H. Li, J. Lee, C. Barnhart, J. R. Potts, R. Piner, D. Akinwande, J. E. Barrick, R. S. Ruoff, ACS Nano 6, 5157–5163 (2012)

    Article  Google Scholar 

  • S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S. K. Banerjee, Appl. Phys. Lett. 94, 062107 (2009a)

    Article  Google Scholar 

  • K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong, Nature 457, 706–710 (2009b)

    Article  Google Scholar 

  • K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 457, 706–710 (2009c)

    Article  Google Scholar 

  • N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, A. D. Gorchinskiy, Chem. Mater. 11, 771–778 (1999)

    Article  Google Scholar 

  • M. Larisika, J. Huang, A. Tok, W. Knoll, C. Nowak, Mater. Chem. Phys. 136, 304–308 (2012)

    Article  Google Scholar 

  • M. Leggate, M. A. Nowell, S. A. Jones, M. A. Nimmo, Cell Stress Chaperones 15, 827–833 (2010)

    Article  Google Scholar 

  • X. Li, W. Cai, L. Colombo, R. S. Ruoff, Nano Lett. 9, 4268–4272 (2009a)

    Article  Google Scholar 

  • X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science, 2009b, 324, 1312–1314.

  • J. Li, Y. He, Y. Han, K. Liu, J. Wang, Q. Li, S. Fan, K. Jiang, Nano Lett. 12, 4095–4101 (2012)

    Article  Google Scholar 

  • K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 1015–1024 (2010)

    Article  Google Scholar 

  • Z. Luo, Y. Lu, L. A. Somers, A. T. C. Johnson, J. Am. Chem. Soc. 131, 898–899 (2009)

    Article  Google Scholar 

  • B. Luo, X. Yan, S. Xu, Q. Xue, Electrochim. Acta 59, 429–434 (2012)

    Article  Google Scholar 

  • R. Malhotra, V. Patel, J. P. Vaqué, J. S. Gutkind, J. F. Rusling, Anal. Chem. 82, 3118–3123 (2010)

    Article  Google Scholar 

  • D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, ACS Nano, 2010, 4, 4806–4814.

  • A. Palaniappan, W. H. Goh, J. N. Tey, I. P. M. Wijaya, S. M. Moochhala, B. Liedberg, S. G. Mhaisalkar, Biosens. Bioelectron. 25, 1989–1993 (2010)

    Article  Google Scholar 

  • S. Park, R. S. Ruoff, Nat Nano 4, 217–224 (2009)

    Article  Google Scholar 

  • C.-J. Shih, S. Lin, R. Sharma, M. S. Strano, D. Blankschtein, Langmuir 28, 235–241 (2012)

    Article  Google Scholar 

  • S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  • C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, L.-J. Li, Chem. Mater. 21, 5674–5680 (2009)

    Article  Google Scholar 

  • C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang, L.-J. Li, ACS Nano 4, 5285–5292 (2010)

    Article  Google Scholar 

  • X. Teng, Y. Zhu, W. Wei, S. Wang, J. Huang, R. Naccache, W. Hu, A. I. Y. Tok, Y. Han, Q. Zhang, Q. Fan, W. Huang, J. A. Capobianco, L. Huang, J. Am. Chem. Soc. 134, 8340–8343 (2012)

    Article  Google Scholar 

  • F. Xia, D. B. Farmer, Y.-m. Lin, P. Avouris, Nano Lett. 10, 715–718 (2010)

    Article  Google Scholar 

  • Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc. 130, 5856–5857 (2008)

    Article  Google Scholar 

  • D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., R. S. Ruoff, Carbon 47, 145–152 (2009)

    Article  Google Scholar 

  • Y. Yao, C. Feng, J. Zhang, Z. Liu, Nano Lett. 9, 1673–1677 (2009)

    Article  Google Scholar 

  • G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li, J. X. Wang, X. M. Meng, Z. B. He, C. M. L. Wu, I. Bello, C. S. Lee, S. T. Lee, Chem. Phys. Lett. 467, 361–364 (2009)

    Article  Google Scholar 

  • Y. Zhang, Z. Li, P. Kim, L. Zhang, C. Zhou, ACS Nano 6, 126–132 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The research was funded by the Institute for Sports Research (ISR) of Nanyang Technological University (NTU). The research was also partly supported by NTU-HUJ-BGU Nanomaterials for Energy and Water Management Programme under the Campus for Research Excellence and Technological Enterprise (CREATE), that is supported by the National Research Foundation, Prime Minister’s Office, Singapore. The author would like to thank Dr. Alagappan Palaniappan from NTU’s Centre for Biomimetic Sensor Science (CBSS) for aiding with the ethanol CVD setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Iing Yoong Tok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Chen, H., Jing, L. et al. Improved synthesis and growth of graphene oxide for field effect transistor biosensors. Biomed Microdevices 18, 61 (2016). https://doi.org/10.1007/s10544-016-0092-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0092-9

Keywords

Navigation