A novel design for passive misscromixers based on topology optimization method

Abstract

In this paper, a series of novel passive micromixers, called topological micromixers with reversed flow (TMRFX), are proposed. The reversed flow in the microchannels can enhance chaotic advection and produce better mixing performance. Therefore the maximum of reversed flow is chosen as the objective function of the topology optimization problem. Because the square-wave unit is easier to fabricate and have better mixing performance than many other serpentine micromixers, square-wave structure becomes the original geometry structure. By simulating analysis, the series of TMRFX, namely TMRF, TMRF0.75, TMRF0.5, TMRF0.25, mix better than the square-wave micromixer at various Reynolds numbers (Re), but pressure drops of TMRFX are much higher. Lots of intensive numerical simulations are conducted to prove that TMRF and TMRF0.75 have remarkable advantages on mixing over other micromixers at various Re. The mixing performance of TMRF0.75 is similar to TMRF’s. What’s more, TMRF have a larger pressure drop than TMRF0.75, which means that TMRF have taken more energy than TMRF0.75. For a wide range of Re (Re ≤ 0.1 and Re ≥ 10), TMRF0.75 delivers a great performance and the mixing efficiency is greater than 95 %. Even in the range of 0.1–10 for the Re, the mixing efficiency of TMRF0.75 is higher than 85 %.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. N Aage, T H Poulsen, A Gersborg-Hansen, et al. Topology optimization of large scale stokes flow problems[J]. Struct. Multidiscip. Optim., 35(2): 175–180 (2008)

  2. M Abdelwahed, M Hassine, Topological optimization method for a geometric control problem in stokes flow[J]. Appl. Numer. Math., 59(8): 1823–1838 (2009)

  3. C S Andreasen, A R Gersborg, O Sigmund, Topology optimization of microfluidic mixers[J]. Int. J. Numer. Methods Fluids, 61(5): 498–513 (2009)

  4. M A Ansari, K Y Kim, Mixing performance of unbalanced split and recombine micomixers with circular and rhombic sub-channels[J]. Chem. Eng. J., 162(2): 760–767 (2009)

  5. N Aoki, R Umei, A Yoshida, et al. Design method for micromixers considering influence of channel confluence and bend on diffusion length[J]. Chem. Eng. J., 167(2): 643–650 (2011)

  6. T Borrvall, J Petersson, Topology optimization of fluids in stokes flow[J]. Int. J. Numer. Methods Fluids, 41(1): 77–107 (2003)

  7. A Cantu-Perez, S Barrass, A Gavriilidis, Residence time distributions in microchannels: comparison between channels with herringbone structures and a rectangular channel[J]. Chem. Eng. J., 160(3): 834–844 (2010)

  8. V J Challis, J K Guest, Level set topology optimization of fluids in stokes flow[J]. Int. J. Numer. Methods Eng., 79(10): 1284–1308 (2009)

  9. X Chen, Topology optimization of microfluidics—a review[J]. Microchem. J., 127: 52–61 (2006)

  10. X Chen, Z Zhang, D Yi, et al. Numerical studies on different two-dimensional micromixers basing on a fractal-like tree network[J]. Microsyst. Technol., 1-9 (2015)

  11. X Chen, T Li, H Zeng, et al. Numerical and experimental investigation on micromixers with serpentine microchannels[J]. Int. J. Heat Mass Transf., 98: 131–140 (2016)

  12. Y Deng, Z Liu, P Zhang, et al. A flexible layout design method for passive micromixers[J]. Biomed. Microdevices, 14(5): 929–945 (2012)

  13. Y Deng, Z Liu, Y Wu,. Topology optimization of steady and unsteady incompressible Navier–stokes flows driven by body forces[J]. Struct. Multidiscip. Optim., 47(4): 555–570 (2013)

  14. X B Duan, Y C Ma, R Zhang, Shape-topology optimization for Navier–stokes problem using variational level set method[J]. J. Comput. Appl. Math., 222(2): 487–499 (2008)

  15. A Evgrafov, Topology optimization of slightly compressible fluids[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 86(1): 46–62 (2006)

  16. A Gersborg-Hansen, O Sigmund, R B Haber, Topology optimization of channel flow problems[J]. Struct. Multidiscip. Optim., 30(3): 181–192 (2005)

  17. J K Guest, J H Prévost, Topology optimization of creeping fluid flows using a Darcy–stokes finite element[J]. Int. J. Numer. Methods Eng., 66(3): 461–484 (2006a)

  18. J K Guest, J H Prévost, Topology optimization of creeping fluid flows using a Darcy–stokes finite element[J]. Int. J. Numer. Methods Eng., 66(3): 461–484 (2006b)

  19. J K Guest, J H Prévost, Design of maximum permeability material structures[J]. Comput. Methods Appl. Mech. Eng., 196(4): 1006–1017 (2007)

  20. S Hossain, M A Ansari, K Y Kim, Evaluation of the mixing performance of three passive micromixers[J]. Chem. Eng. J., 150(2): 492–501 (2009)

  21. S Kreissl, G Pingen, K Maute, Topology optimization for unsteady flow[J]. Int. J. Numer. Methods Eng., 87(13): 1229–1253 (2011)

  22. Y Lin, Numerical characterization of simple three-dimensional chaotic micromixers[J]. Chem. Eng. J., 277: 303–311 (2015)

  23. L H Olesen, F Okkels, H Bruus, A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow[J]. arXiv preprint physics/0410086, (2004)

  24. R L Panton, Incompressible flow[J]. (1984)

    Google Scholar 

  25. G. Pingen, K. Maute, Optimal design for non-Newtonian flows using a topology optimization approach[J]. Computers & Mathematics with Applications 59(7), 2340–2350 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  26. E Saatdjian, A J S Rodrigo, J P B Mota, On chaotic advection in a static mixer[J]. Chem. Eng. J., 187: 289–298 (2012)

  27. K Svanberg, The method of moving asymptotes—a new method for structural optimization[J]. Int. J. Numer. Methods Eng., 24(2): 359–373 (1987)

  28. N Wiker, A Klarbring, T Borrvall, Topology optimization of regions of Darcy and stokes flow[J]. Int. J. Numer. Methods Eng., 69(7): 1374–1404 (2007)

  29. S Zhou, Q Li, A variational level set method for the topology optimization of steady-state Navier–stokes flow[J]. J. Comput. Phys., 227(24): 10178–10195 (2008)

  30. T Zhou, Y Xu, Z Liu, et al. An enhanced one-layer passive microfluidic mixer with an optimized lateral structure with the dean effect[J]. J. Fluids Eng., 137(9): 091102 (2015)

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (51405214), Liaoning Province Doctor Startup Fund (20141131), Fund of Liaoning Province Education Administration (L2014241), and the Fund in Liaoning University of Technology (X201301).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, T. A novel design for passive misscromixers based on topology optimization method. Biomed Microdevices 18, 57 (2016). https://doi.org/10.1007/s10544-016-0082-y

Download citation

Keywords

  • The square-wave micromixer
  • Topology optimization
  • The reverse flow
  • TMRFX
  • Numerical simulations