Skip to main content

An electromagnetic cell-stretching device for mechanotransduction studies of olfactory ensheathing cells

Abstract

Olfactory ensheathing cells (OECs) are primary candidates for cell transplantation therapy to repair spinal cord injury (SCI). However, the post transplantation survival of these cells remains a major hurdle for a success using this therapy. Mechanical stimuli may contribute to the maintenance of these cells and thus, mechanotransduction studies of OECs may serve as a key benefit to identify strategies for improvement in cell transplantation. We developed an electromagnetic cell stretching device based on a single sided uniaxial stretching approach to apply tensile strain to OECs in culture. This paper reports the design, simulation and characterisation of the stretching device with preliminary experimental observations of OECs in vitro. The strain field of the deformable membrane was investigated both experimentally and numerically. Heterogeneity of the device provided an ideal platform for establishing strain requirement for the OEC culture. The cell stretching system developed may serve as a tool in exploring the mechanobiology of OECs for future SCI transplantation research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. W.W. Ahmed, T. Wolfram, A.M. Goldyn, K. Bruellhoff, B.A. Rioja, M. Moller, J.P. Spatz, T.A. Saif, J. Groll, R. Kemkemer, Biomaterials 31(2), 250–258 (2010)

    Article  Google Scholar 

  2. S.P. Arold, J.Y. Wong, B. Suki, Ann. Biomed. Eng. 35(7), 1156–1164 (2007)

    Article  Google Scholar 

  3. R.P. Brandes, N. Weissmann, K. Schroder, Antioxid. Redox Signal. 20(6), 887–898 (2014)

    Article  Google Scholar 

  4. Y. Cui, F. M. Hameed, B. Yang, K. Lee, C. Q. Pan, S. Park, M. Sheetz, Nat. Commun. 6 (2015)

  5. S. Deguchi, S. Kudo, T.S. Matsui, W. Huang, M. Sato, AIP Adv. 5(6), 067110 (2015)

    Article  Google Scholar 

  6. S. Dhein, A. Schreiber, S. Steinbach, D. Apel, A. Salameh, F. Schlegel, M. Kostelka, P.M. Dohmen, F.W. Mohr, Prog. Biophys. Mol. Biol. 115(2–3), 93–102 (2014)

    Article  Google Scholar 

  7. C.C. DuFort, M.J. Paszek, V.M. Weaver, Nat. Rev. Mol. Cell Biol. 12(5), 308–319 (2011)

    Article  Google Scholar 

  8. J.A. Ekberg, J.A. St John, Anat Rec (Hoboken) 297(1), 121–128 (2014)

    Article  Google Scholar 

  9. J.A.K. Ekberg, J.A. St John, Neural Regen. Res. 10(9), 1395–1396 (2015)

    Article  Google Scholar 

  10. J.A. Ekberg, D. Amaya, A. Mackay-Sim, J.A. St John, Neurosignals 20(3), 147–158 (2012)

    Article  Google Scholar 

  11. I. Guido, C. Xiong, M.S. Jaeger, C. Duschl, Microelectron. Eng. 97, 379–382 (2012)

    Article  Google Scholar 

  12. Z. He, R. Potter, X. Li, M. Flessner, Adv. Perit. Dial. 28, 2–9 (2012)

    Google Scholar 

  13. S. Higgins, J.S. Lee, L. Ha, J.Y. Lim, Biores. Open Access 2(3), 212–216 (2013)

    Article  Google Scholar 

  14. Y. Huang, N.T. Nguyen, Biomed. Microdevices 15(6), 1043–1054 (2013)

    Article  Google Scholar 

  15. Z.H. Huang, Y. Wang, X.B. Yuan, C. He, Exp. Cell Res. 317(20), 2823–2834 (2011)

    Article  Google Scholar 

  16. D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber, Science 328(5986), 1662–1668 (2010)

    Article  Google Scholar 

  17. D.E. Ingber, Ann. Med. 35(8), 564–577 (2003)

    Article  Google Scholar 

  18. Y. Iwadate, S. Yumura, Biotechniques 47(3), 757–767 (2009)

    Article  Google Scholar 

  19. Y. Kamotani, T. Bersano-Begey, N. Kato, Y.C. Tung, D. Huh, J.W. Song, S. Takayama, Biomaterials 29(17), 2646–2655 (2008)

    Article  Google Scholar 

  20. D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Science 333(6044), 838–843 (2011)

    Article  Google Scholar 

  21. J.M. Mann, R.H. Lam, S. Weng, Y. Sun, J. Fu, Lab Chip 12(4), 731–740 (2012)

    Article  Google Scholar 

  22. C. Moraes, J.H. Chen, Y. Sun, C.A. Simmons, Lab Chip 10(2), 227–234 (2010)

    Article  Google Scholar 

  23. C. Neidlinger-Wilke, H.J. Wilke, L. Claes, J. Orthop. Res. 12(1), 70–78 (1994)

    Article  Google Scholar 

  24. S. Nishimura, K. Seo, M. Nagasaki, Y. Hosoya, H. Yamashita, H. Fujita, R. Nagai, S. Sugiura, Prog. Biophys. Mol. Biol. 97(2-3), 282–297 (2008)

    Article  Google Scholar 

  25. R.N. Palchesko, L. Zhang, Y. Sun, A.W. Feinberg, PLoS ONE 7(12), e51499 (2012)

    Article  Google Scholar 

  26. K. Sato, S. Kamada, K. Minami, IJMS 52(2), 251–256 (2010)

    Google Scholar 

  27. Y. Shao, X. Tan, R. Novitski, M. Muqaddam, P. List, L. Williamson, J. Fu, A.P. Liu, Rev. Sci. Instrum. 84(11), 114304 (2013)

    Article  Google Scholar 

  28. F.H. Silver, L.M. Siperko, Crit. Rev. Biomed. Eng. 31(4), 255–331 (2003)

    Article  Google Scholar 

  29. C.S. Simmons, J.Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, B.L. Pruitt, J. Micromech. Microeng. 21(5), 54016–54025 (2011)

    Article  Google Scholar 

  30. N.J. Sniadecki, C.M. Lamb, Y. Liu, C.S. Chen, D.H. Reich, Rev. Sci. Instrum. 79(4), 044302 (2008)

    Article  Google Scholar 

  31. Y.L. Sun, Z.P. Luo, A. Fertala, K.N. An, J. Biomech. 37(11), 1665–1669 (2004)

    Article  Google Scholar 

  32. P. Tabakow, G. Raisman, W. Fortuna, M. Czyz, J. Huber, D. Li, P. Szewczyk, S. Okurowski, R. Miedzybrodzki, B. Czapiga, B. Salomon, A. Halon, Y. Li, J. Lipiec, A. Kulczyk, W. Jarmundowicz, Cell Transplant. 23(12), 1631–1655 (2014)

    Article  Google Scholar 

  33. Y.H. Tan, D. Sun, J.Z. Wang, W.H. Huang, IEEE Trans. Biomed. Eng. 57(7), 1816–1825 (2010)

    Article  Google Scholar 

  34. M. A. Teitell, S. Kalim, J. Schmit, J. Reed, Biomechanics of Single Cells and Cell Populations, ed. by D. Ho, (2010)

  35. J. Tello Velasquez, M.E. Watts, M. Todorovic, L. Nazareth, E. Pastrana, J. Diaz-Nido, F. Lim, J.A. Ekberg, R.J. Quinn, J.A. St John, PLoS ONE 9(10), e111787 (2014)

    Article  Google Scholar 

  36. J.H.C. Wang, B.P. Thampatty, Biomech. Model. Mechanobiol. 5(1), 1–16 (2006)

    Article  Google Scholar 

  37. S. Wang, J. Lu, Y.A. Li, H. Zhou, W.F. Ni, X.L. Zhang, S.P. Zhu, B.B. Chen, H. Xu, X.Y. Wang, J. Xiao, H. Huang, Y.L. Chi, H.Z. Xu, Cell Transplant. 25(1), 141–157 (2016)

    Article  Google Scholar 

  38. L.C. Windus, C. Claxton, C.L. Allen, B. Key, J.A. St John, Glia 55(16), 1708–1719 (2007)

    Article  Google Scholar 

  39. L.C. Windus, F. Chehrehasa, K.E. Lineburg, C. Claxton, A. Mackay-Sim, B. Key, J.A. St John, Cell. Mol. Life Sci. 68(19), 3233–3247 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Perry Cross Spinal Research Foundation grant to JSJ and BioNano Health-Guard Research Center as Global Frontier Project (H-guard 2013M3A6B2078959) through National Research Foundation (NRF) in Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nam-Trung Nguyen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harshad, K., Jun, M., Park, S. et al. An electromagnetic cell-stretching device for mechanotransduction studies of olfactory ensheathing cells. Biomed Microdevices 18, 45 (2016). https://doi.org/10.1007/s10544-016-0071-1

Download citation

Keywords

  • Cell stretching
  • Mechanotransduction
  • Biomedical device
  • Mechanobiology