Skip to main content

Incorporation of VSV-G produces fusogenic plasma membrane vesicles capable of efficient transfer of bioactive macromolecules and mitochondria

Abstract

The objective of this study was to determine if plasma membrane vesicles (PMVs) could be exploited for efficient transfer of macro-biomolecules and mitochondria. PMVs were derived from mechanical extrusion, and made fusogenic (fPMVs) by incorporating the glycoprotein G of vesicular stomatitis virus (VSV-G). Confocal microscopy examination revealed that cytoplasmic proteins and mitochondria were enclosed in PMVs as evidenced by tracing with cytoplasmically localized and mitochondria-targeted EGFP, respectively. However, no fluorescence signal was detected in PMVs from cells whose nucleus was labeled with an EGFP-tagged histone H2B. Consistently, qRT-PCR measurement showed that mRNA, miRNA and mitochondrial DNA decreased slightly; while nuclear DNA was not measureable. Further, Western blot analysis revealed that cytoplasmic and membrane-bound proteins fell inconspicuously while nuclear proteins were barely detecsle. In addition, fPMVs carrying cytoplamic DsRed proteins transduced about ~40 % of recipient cells. The transfer of protein was further confirmed by using the inducible Cre/loxP system. Mitochondria transfer was found in about 20 % recipient cells after incubation with fPMVs for 5 h. To verify the functionalities of transferred mitochondria, mitochodria-deficient HeLa cells (Rho0) were generated and cultivated with fPMVs. Cell enumeration demonstrated that adding fPMVs into culture media stimulated Rho0 cell growth by 100 % as compared to the control. Lastly, MitoTracker and JC-1 staining showed that transferred mitochondria maintained normal shape and membrane potential in Rho0 cells. This study established a time-saving and efficient approach to delivering proteins and mitochondria by using fPMVs, which would be helpful for finding a cure to mitochondria-associated diseases.

Schematic of the delivery of macro-biomolecules and organelles by fPMVs. VSV-G-expressing cells were extruded through a 3 μm polycarbonate membrane filter to generate fusogenic plasma membrane vesicles (fPMVs), which contain bioactive molecules and organelles but not the nucleus. fPMVs can be endocytosed by target cells, while the cargo is released due to low-pH induced membrane fusion. These nucleus-free fPMVs are efficient at delivery of cytoplasmic proteins and mitochondria, leading to recovery of mitochondrial biogenesis and proliferative ability in mitochondria-deficient cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. A. Abe, A. Miyanohara, T. Friedmann, J Virol 72(6159–6163) (1998)

  2. A. C. Anselmo, S. Mitragotri, J Control Release 190(15–28) (2014)

  3. Ayako N, Takashi S, Noriko A, Akira I. Michihiro S. Endocrinology 146: 2593–2601 (2005)

  4. F. Burte, V. Carelli, P. F. Chinnery, P. Yu-Wai-man, Nat Rev Neurol 11(11–24) (2015)

  5. H. Bysell, R. Månsson, P. Hansson, M. Malmsten, Adv Drug Deliv Rev 63(1172–1185) (2011)

  6. T. G. D. Carvalho, U. D. S. Matte, R. Giugliani, G. Baldo, Curr Stem Cell Rep 1(9–15) (2015)

  7. J. C. Chang, K. H. Liu, C. S. Chuang, S. HL, W. YH, K. SJ, et al., Cytotherapy 15, 1580–1596 (2013)

    Article  Google Scholar 

  8. Croyle MA, Callahan SM, Alberto A, Gregg S, Linse KD, Wilson JM, et al. J Virol 78:912–921 (2004)

  9. F. Danit, W. Ariel, N. Daniela, B. Sara, M. R., Proc Natl Acad Sci U S A 110(7306–7311) (2013)

  10. P. Detampela, D. Witzigmanna, S. Krähenbühlb, H. J., J Drug Target 22(232–241) (2013)

  11. J. Dolatabadi, H. Valizadeh, H. H., Adv Pharm Bull 5(151–159) (2015)

  12. H. Du, L. Guo, S. Yan, A. A. Sosunov, G. M. Mckhann, Y. SS, Proc Natl Acad Sci U S A 107(18670–18675) (2010)

  13. G. M. Enns, M. T. Millan, Mol Genet Metab 95(3–10) (2008)

  14. M. E. Figueiredo-Pereira, P. Rockwell, T. Schmidt-Glenewinkel, P. Serrano, Front Hum Neurosci 7, 104 (2014)

    Google Scholar 

  15. A. Gamez, L. Wang, M. Straub, M. G. Patch, S. RC., Mol Ther 9(124–129) (2004)

  16. G. C. Gong, W. Z. Fan, D. Z. Li, X. Tian, S. J. Chen, F. YC, et al., PLoS One 10, e0129092 (2015)

    Article  Google Scholar 

  17. Z. Gu, A. Biswas, M. Zhao, Y. Tang, Chem Soc Rev 40(3638–3655) (2011)

  18. S. Guillard, R. R. Minter, J. RH, Trends Biotechnol 33(163–171) (2015)

  19. R. Hoffmann, S. H. Stüwe, O. Goetze, M. Banasch, P. Klotz, C. Lukas, et al., Mov Disord 29(831–834) (2014)

  20. Y. Jin-Wook, D. J. Irvine, D. E. Discher, M. Samir, Nat Rev Drug Discov 10(521–535) (2011)

  21. S. J. Kaczmarczyk, K. Sitaraman, Y. HA, H. SH, C. DK, Proc Natl Acad Sci U S A 108(16998–17003) (2011)

  22. G. C. Kujoth, A. Hiona, T. D. Pugh, S. Someya, K. Panzer, Wohlqemuty, et al., Science 309, 481–484 (2005)

    Article  Google Scholar 

  23. P. Kumar, S. Guha, U. Diederichsen, J Pept Sci 21(621–629) (2015)

  24. S. Li, S. Zhu, C. Li, Z. Zhang, L. Zhou, S. Wang, et al., PLoS One 8, e73392 (2013)

    Article  Google Scholar 

  25. H. P. Lim, B. T. Tey, E. S. Chan, J Control Release 186c:, 11–21 (2014)

    Article  Google Scholar 

  26. P. B. B. Maria, M. Giovanni, M. Carlos T, Nucleic Acids Res 31, e98 (2003)

    Article  Google Scholar 

  27. A. Mcdermott, J. Jacks, M. Kessler, E. PD, L. Gao, Int J Dermatol 54(121–129) (2015)

  28. R. V. D. Meel, M. H. A. M. Fens, P. Vader, S. WWV, O. Eniola-Adefeso, R. M. Schiffelers, J Control Release 195(72–85) (2014)

  29. A. Patel, K. Cholkar, M. AK, Ther Deliv 5(337–365) (2014)

  30. S. W. Peng, L. Y. Zhu, M. Chen, M. Zhang, D. Z. Li, F. YC, et al., Endocrinology 150, 3058–3066 (2009)

    Article  Google Scholar 

  31. M. Philippe-Emmanuel, D. Sandra, G. Mathilde, C. Claire, J. Stéphane, P. Marc, et al., Mol Ther 19(1656–1666) (2011)

  32. C. A. Pinkert, M. H. Irwin, L. W. Johnson, M. RJ, Transgenic Res 6(379–383) (1997)

  33. S. Rani, A. E. Ryan, M. D. Griffin, T. Ritter, Mol Ther 23(812–823) (2015)

  34. A. Salminen, A. Haapasalo, A. Kauppinen, K. Kaarniranta, H. Soininen, Hiltunen M. Prog Neurobiol 131(1–20) (2015)

  35. A. H. Schapira, Lancet 379, 1825–1834 (2012)

    Article  Google Scholar 

  36. J. Shi, L. Kundrat, N. Pishesha, A. Bilate, C. Theile, T. Maruyama, et al., Proc Natl Acad Sci U S A 111(10131–10136) (2014)

  37. J. I. Shoji, Y. Tanihara, T. Uchiyama, K. A., Microbiol Immunol 48(163–174) (2004)

  38. J. L. Spees, S. D. Olson, M. J. Whitney, P. DJ, Proc Natl Acad Sci U S A 103(1283–1288) (2006)

  39. U. Steinhoff, U. Muller, A. Schertler, H. Hengartner, M. Aguet, Z. RM, J Virol 69(2153–2158) (1995)

  40. J. Szendroedi, E. Phielix, M. Roden, Nat Rev Endocrinol 8(92–103) (2011)

  41. M. M. Tang, Q. E. Zhu, W. Z. Fan, S. L. Zhang, D. Z. Li, L. LZ, et al., Mol Ther 19(60–66) (2011)

  42. V. P. Torchilin, Nat Rev Drug Discov 13, 813–827 (2014)

    Article  Google Scholar 

  43. U. Unzueta, M. V. Céspedes, E. Vázquez, N. Ferrer-Miralles, R. Mangues, A. Villaverde, Trends Biotechnol 33(253–258) (2015)

  44. R. B. Vega, J. L. Horton, K. DP, Circ Res 116(1820–1834) (2015)

  45. X. Wang, H.-H. Gerdes, Cell Death Differ 22(1181–1191) (2015)

  46. Z. Wei, ,. G. J. Gu, S. Xing, Z. Qi, W. G.M, W. PJ, Neurobiol Aging 36(1282–1292) (2015)

  47. J. R. Wilkinson, S. L. Colombo, J. Erusalimsky, Eur Heart J 27, 875 (2006)

    Article  Google Scholar 

  48. H. Wu, A. E. Oliver, V. N. Ngassam, C. K. Yee, P. AN, Y. Yin, Integr Biol 4(685–692) (2012)

  49. Y. Yao, K. Ghosh, R. F. Epand, R. M. Epand, G. HP, Virology 310(319–332) (2003)

  50. K. Yasuda, A. Khandare, L. Burianovskyy, S. Maruyama, F. Zhang, A. Nasjletti, et al., Aging 3(597–608) (2011)

  51. S. L. Yi, B. L. Tang, Cell Commun Adhes 19(39–44) (2012)

  52. H. B. You, K. Park, J Control Release 153(198–205) (2011)

  53. M. E. Zenilman, M. Fiani, P. Stahl, E. Brunt, F. MW, J Surg Res 45(82–89) (1988)

Download references

Acknowledgments

This research was supported by the Li Ka Shing Foundation; the Natural Science Foundation of China (http://www.nsfc.gov.cn/ Grant No. 30971665, 81172894, 81370925); and the Education Department of Guangdong (http://www.gdhed.edu.cn/ Grant No. cxzd1123).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chi-ju Wei.

Ethics declarations

Disclosure of interest

No competing financial interests exist.

Additional information

Hao-peng Lin and De-jin Zheng contributed equally to this research.

Electronic supplementary material

Supplementary Figure 1
figure6

Functional verification of mitochondria between Ad293 cells and fPMVs. (A) Western blot analysis of MTCO1 in Ad293 cells and fPMVs. TOM20 was used as a loading control. (B) Estimation of the expression levels of MTCO1 in Ad293 cells and fPMVs. The ratio of MTCO1 to TOM20 in cell lysates was arbitrarily assigned as 1. Data are represented by mean ± sem. N = 5. (*p < 0.05) (GIF 9 kb)

Supplementary Figure 2
figure7

Restoration of mitochondrial membrane potential in Rho0 HeLa cells. (A) TMRE staining in Rho0 cells 5 days after PMVs or fPMVs incubation. Scale bar =100 μm. (B) Estimation of mitochondrial membrane potential in rescued Rho0 cells was shown. The △Ψ of PMVs added group was arbitrarily assigned as 1. Data are represented by mean ± sem. N = 5. (*p < 0.05) (GIF 56 kb)

Supplementary Figure 3
figure8

Recovery of Rho0 mitochondrial function depended on mito-transfer. (A) Morphology of Ad293 cells and R6G-treated Ad293 cells. Scale bar =100 μm. (B) Mitochondrial dysfunction of R6G-treated cells was confirmed by western blot analysis of MTCO1 expression. TOM20 was used as a loading control. (C) Culture of Rho0 cells in the presence of fPMVs with/without R6G pretreatment. Scale bar =100 μm. (D) Cell number of rescued Rho0 cells after 5 day cultivation. Data are represented by mean ± sem. N = 5. (*p < 0.05) (GIF 29 kb)

High Resolution Image (TIFF 287 kb)

High Resolution Image (TIFF 5023 kb)

High Resolution Image (TIFF 1550 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Hp., Zheng, Dj., Li, Yp. et al. Incorporation of VSV-G produces fusogenic plasma membrane vesicles capable of efficient transfer of bioactive macromolecules and mitochondria. Biomed Microdevices 18, 41 (2016). https://doi.org/10.1007/s10544-016-0066-y

Download citation

Keywords

  • Macro-biomolecules
  • Mitochondria
  • Plasma membrane vesicles
  • Rho0 cells
  • VSV-G