Skip to main content
Log in

An Universal packaging technique for low-drift implantable pressure sensors

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Monitoring bodily pressures provide valuable diagnostic and prognostic information. In particular, long-term measurement through implantable sensors is highly desirable in situations where percutaneous access can be complicated or dangerous (e.g., intracranial pressure in hydrocephalic patients). In spite of decades of progress in the fabrication of miniature solid-state pressure sensors, sensor drift has so far severely limited their application in implantable systems. In this paper, we report on a universal packaging technique for reducing the sensor drift. The described method isolates the pressure sensor from a major source of drift, i.e., contact with the aqueous surrounding environment, by encasing the sensor in a silicone-filled medical-grade polyurethane balloon. In-vitro soak tests for 100 days using commercial micromachined piezoresistive pressure sensors demonstrate a stable operation with the output remaining within 1.8 cmH2O (1.3 mmHg) of a reference pressure transducer. Under similar test conditions, a non-isolated sensor fluctuates between 10 and 20 cmH2O (7.4–14.7 mmHg) of the reference, without ever settling to a stable operation regime. Implantation in Ossabow pigs demonstrate the robustness of the package and its in-vivo efficacy in reducing the baseline drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • D. G. Fleming, Indwelling and implantable pressure transducers (CRC, Cleveland, OH, 1977)

    Google Scholar 

  • T. Tagawa, T. Tamura, P. A. Oberg, Biomedical sensors and instruments, 2nd edn. (CRC Press: Boca Raton, USA, 2011)

  • M. U. Schuhmann, M. Czosnyka (Eds.), Intracranial pressure and brain monitoring, (Springer Science & Business Media. XIV. Vol. 114, 2012)

  • L. Yu, B. Kim, E. Meng, Chronically implanted pressure sensors: challenges and state of the field. Sensors 14, 20620–20644 (2014)

    Article  Google Scholar 

  • DSI, “PhysioTel® HD Implant Specifications.” [Online]. Available: http://www.datasci.com/products/implantable-telemetry/specification-overview. Accessed: 01-Jan-2015

  • D. Brooks, R. L. Horner, L. F. Kozar, T. K. Waddell, C. L. Render, E. A. Phillipson, Validation of a telemetry system for long-term measurement of blood pressure. J. Appl. Physiol. 81(2), 1012–1018 (1996)

    Google Scholar 

  • A. M. Leung, W. H. Ko, T. M. Spear, J. A. Bettice, Intracranial pressure telemetry system using semicustom integrated circuits. IEEE Trans. Biomed. Eng. 33(4), 386–395 (1986)

    Article  Google Scholar 

  • J. S. Kroin, R. J. McCarthy, L. Stylos, K. Miesel, A. D. Ivankovich, R. D. Penn, Long-term testing of an intracranial pressure monitoring device. J. Neurosurg. 93, 852–858 (2000)

    Article  Google Scholar 

  • W. T. Abraham, P. B. Adamson, R. C. Bourge, M. F. Aaron, M. R. Costanzo, L. W. Stevenson, W. Strickland, S. Neelagaru, N. Raval, S. Krueger, S. Weiner, D. Shavelle, B. Jeffries, J. S. Yadav, Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: A randomised controlled trial. Lancet 377(9766), 658–666 (2011)

    Article  Google Scholar 

  • V. Medical, “Vention Medical: Technical Information.” [Online]. Available: http://www.ventionmedical.com/products-and-services/advanced-polymers/heat-shrink-tubing/technical-info/. Accessed: 18-Aug-2015

  • “Technical Datasheet, Loctite ® 3105™,” (2005)

  • C. R. Powell, A. Kim, M. Alloosh, M. Sturek, B. Ziaie, Wireless urodynamic device demonstrates submucosal sensor is comparable to urodynamic catheter. Neurourol and Urodyn: SUFU, Scottsdale, AZ, USA 34, S6–S6 (2015)

    Google Scholar 

  • W. Lee, A. Kim, C. R. Powell, B. Ziaie, and V. Raghunathan, Up-Link: an ultra-low power implantable wireless system for long-term ambulatory urodynamics. in Biomedical Circuits and Systems Conference, Lausanne, Switzerland, (2014)

    Google Scholar 

Download references

Acknowledgment

Authors would like to thank to Dr. SeungHyun Song for valuable discussions. This work was supported in part by a Project Development Team within the ICTSI NIH/NCRR Grant Number RR025761 and NIDDK DiaComp Pilot & Feasibility project, DK076169 (Powell, PI) and NIH grant HL 062552 (Sturek, PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Ziaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, A., Powell, C.R. & Ziaie, B. An Universal packaging technique for low-drift implantable pressure sensors. Biomed Microdevices 18, 32 (2016). https://doi.org/10.1007/s10544-016-0058-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0058-y

Keywords

Navigation