Skip to main content
Log in

Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics

Biomedical Microdevices Aims and scope Submit manuscript

Cite this article

Abstract

Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • M. M. Ali, S. D. Aguirre, Y. Q. Xu, C. D. M. Filipe, R. Pelton, Y. F. Li, Detection of DNA using bioactive paper strips. Chem. Commun. 43, 6640–6642 (2009)

    Article  Google Scholar 

  • L. Buckingham, M. L. Flaws, Molecular Diagnostics: Fundamentals, Methods, & Clinical Applications (F.A. Davis, Philadelphia, 2007)

    Google Scholar 

  • J. T. Connelly, J. P. Rolland, G. M. Whitesides, “Paper machine” for molecular diagnostics. Anal. Chem. 87(15), 7595–7601 (2015)

    Article  Google Scholar 

  • M. S. Cordray, R. R. Richards-Kortum, A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA. Malar. J. 14(1), 472 (2015)

  • M. Enosawa, S. Kageyama, K. Sawai, K. Watanabe, T. Notomi, S. Onoe, Y. Mori, Y. Yokomizo, Use of loop-mediated isothermal amplification of the IS900 sequence for rapid detection of cultured Mycobacterium avium subsp. paratuberculosis. J. Clin. Microbiol. 41(9), 4359–4365 (2003)

  • I. Erill, S. Campoy, N. Erill, J. Barbe, J. Aguilo, Biochemical analysis and optimization of inhibition and adsorption phenomena in glass-silicon PCR-chips. Sensors Actuators B Chem. 96(3), 685–692 (2003)

    Article  Google Scholar 

  • T. Ferreira, W. S. Rasband,  ImageJ User Guide — IJ 1.46 imagej.nih.gov/ij/docs/guide/ (U.S. National Institutes of Health, 2010–2012)

  • W. P. Gan, B. Zhuang, P. F. Zhang, J. P. Han, C. X. Li, P. Liu, A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types. Lab Chip 14(19), 3719–3728 (2014)

    Article  Google Scholar 

  • World Health Organization, CDC Protocol of Realtime RTPCR for Influenza A(H1N1) (World Health Organization, Geneva, 2009)

  • K. Kamachi, H. Toyoizumi-Ajisaka, K. Toda, S. C. Soeung, S. Sarath, Y. Nareth, Y. Horiuchi, K. Kojima, M. Takahashi, Y. Arakawa, Development and evaluation of a loop-mediated isothermal amplification method for rapid diagnosis of Bordetella pertussis infection. J. Clin. Microbiol. 44(5), 1899–1902 (2006)

  • H. Kaneko, T. Kawana, E. Fukushima, T. Suzutani, Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods 70(3), 499–501 (2007)

    Article  Google Scholar 

  • T. Kubo, M. Agoh, Q. Mai le, K. Fukushima, H. Nishimura, A. Yamaguchi, M. Hirano, A. Yoshikawa, F. Hasebe, S. Kohno, K. Morita, Development of a reverse transcription-loop-mediated isothermal amplification assay for detection of pandemic (H1N1) 2009 virus as a novel molecular method for diagnosis of pandemic influenza in resource-limited settings. J. Clin. Microbiol. 48(3), 728–735 (2010)

  • C. C. Li, I. A. Beck, K. D. Seidel, L. A. Frenkel, Persistence of human immunodeficiency virus type 1 subtype B DNA in dried-blood samples on FTA filter paper. J. Clin. Microbiol. 42(8), 3847–3849 (2004)

    Article  Google Scholar 

  • J. Li, J. Macdonald, Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens. Bioelectron. 64, 196–211 (2015)

    Article  Google Scholar 

  • J. C. Linnes, A. Fan, N. M. Rodriguez, B. Lemieux, H. Kong, C. M. Klapperich, Paper-based molecular diagnostic for Chlamydia trachomatis. RSC Adv. 4(80), 42245–42251 (2014)

  • C. Liu, E. Geva, M. Mauk, X. Qiu, W. R. Abrams, D. Malamud, K. Curtis, S. M. Owen, H. H. Bau, An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst 136(10), 2069–2076 (2011)

    Article  Google Scholar 

  • S. C. Low, R. Shaimi, Y. Thandaithabany, J. K. Lim, A. L. Ahmad, A. Ismail, Electrophoretic interactions between nitrocellulose membranes and proteins: Biointerface analysis and protein adhesion properties. Colloids Surf. B: Biointerfaces 110, 248–253 (2013)

    Article  Google Scholar 

  • Millipore, 33 mm Medical Millex Filter Units with Millipore Express membrane (Millipore  Corporation, Bedford, MA, 2002), Rev. A 7/02 02–208: 2 

  • L. L. M. Poon, B. W. Y. Wong, E. H. T. Ma, K. H. Chan, L. M. C. Chow, W. Abeyewickreme, N. Tangpukdee, K. Y. Yuen, Y. Guan, S. Looareesuwan, J. S. M. Peiris, Sensitive and inexpensive molecular test for falciparum malaria: Detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin. Chem. 52(2), 303–306 (2006)

  • U. Reischl, N. Lehn, G. N. Sanden, M. J. Loeffelholz, Real-time PCR assay targeting IS481 of Bordetella pertussis and molecular basis for detecting Bordetella holmesii. J. Clin. Microbiol. 39(5), 1963–1966 (2001)

  • N. M. Rodriguez, J. C. Linnes, A. Fan, C. K. Ellenson, N. R. Pollock, C. M. Klapperich, Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of influenza A (H1N1) from clinical specimens. Anal. Chem. 87(15), 7872–7879 (2015)

    Article  Google Scholar 

  • N. M. Rodriguez, W. S. Wong, L. Liu, R. Dewar, C. M. Klapperich, A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 16(4), 753–63 (2016)

  • B. A. Rohrman, V. Leautaud, E. Molyneux, R. R. Richards-Kortum, A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One 7(9), e45611 (2012)

    Article  Google Scholar 

  • B. A. Rohrman, R. R. Richards-Kortum, A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 12(17), 3082–3088 (2012)

    Article  Google Scholar 

  • T. B. Taylor, E. S. WinnDeen, E. Picozza, T. M. Woudenberg, M. Albin, Optimization of the performance of the polymerase chain reaction in silicon-based microstructures. Nucleic Acids Res. 25(15), 3164–3168 (1997)

    Article  Google Scholar 

  • A. D. Warren, G. A. Kwong, D. K. Wood, K. Y. Lin, S. N. Bhatia, Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl. Acad. Sci. U. S. A. 111(10), 3671–3676 (2014)

    Article  Google Scholar 

  • Whatman, Protran® Nitrocellulose Membranes. Proteomics and Glycomics Brochure (Whatman, Inc., Florham Park, 2004), p. 6

    Google Scholar 

  • R. C. Wong, H. Y. Tse, Lateral Flow Immunoassay (Springer, New York, 2009)

    Book  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH/NIAID F32-AI110023 (JCL) and NIH U54-EB015403 (CMK, NMR, LL) as well as the National Science Foundation Graduate Research Fellowship (NMR) and a Diversity Administrative Supplement under NIH U54-EB015403-S1 (CMK, NMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Klapperich.

Electronic supplementary material

ESM 1

(DOCX 879 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linnes, J.C., Rodriguez, N.M., Liu, L. et al. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics. Biomed Microdevices 18, 30 (2016). https://doi.org/10.1007/s10544-016-0057-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0057-z

Keywords

Navigation