Abstract
Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications.
This is a preview of subscription content,
to check access.



References
M. M. Ali, S. D. Aguirre, Y. Q. Xu, C. D. M. Filipe, R. Pelton, Y. F. Li, Detection of DNA using bioactive paper strips. Chem. Commun. 43, 6640–6642 (2009)
L. Buckingham, M. L. Flaws, Molecular Diagnostics: Fundamentals, Methods, & Clinical Applications (F.A. Davis, Philadelphia, 2007)
J. T. Connelly, J. P. Rolland, G. M. Whitesides, “Paper machine” for molecular diagnostics. Anal. Chem. 87(15), 7595–7601 (2015)
M. S. Cordray, R. R. Richards-Kortum, A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA. Malar. J. 14(1), 472 (2015)
M. Enosawa, S. Kageyama, K. Sawai, K. Watanabe, T. Notomi, S. Onoe, Y. Mori, Y. Yokomizo, Use of loop-mediated isothermal amplification of the IS900 sequence for rapid detection of cultured Mycobacterium avium subsp. paratuberculosis. J. Clin. Microbiol. 41(9), 4359–4365 (2003)
I. Erill, S. Campoy, N. Erill, J. Barbe, J. Aguilo, Biochemical analysis and optimization of inhibition and adsorption phenomena in glass-silicon PCR-chips. Sensors Actuators B Chem. 96(3), 685–692 (2003)
T. Ferreira, W. S. Rasband, ImageJ User Guide — IJ 1.46 imagej.nih.gov/ij/docs/guide/ (U.S. National Institutes of Health, 2010–2012)
W. P. Gan, B. Zhuang, P. F. Zhang, J. P. Han, C. X. Li, P. Liu, A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types. Lab Chip 14(19), 3719–3728 (2014)
World Health Organization, CDC Protocol of Realtime RTPCR for Influenza A(H1N1) (World Health Organization, Geneva, 2009)
K. Kamachi, H. Toyoizumi-Ajisaka, K. Toda, S. C. Soeung, S. Sarath, Y. Nareth, Y. Horiuchi, K. Kojima, M. Takahashi, Y. Arakawa, Development and evaluation of a loop-mediated isothermal amplification method for rapid diagnosis of Bordetella pertussis infection. J. Clin. Microbiol. 44(5), 1899–1902 (2006)
H. Kaneko, T. Kawana, E. Fukushima, T. Suzutani, Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods 70(3), 499–501 (2007)
T. Kubo, M. Agoh, Q. Mai le, K. Fukushima, H. Nishimura, A. Yamaguchi, M. Hirano, A. Yoshikawa, F. Hasebe, S. Kohno, K. Morita, Development of a reverse transcription-loop-mediated isothermal amplification assay for detection of pandemic (H1N1) 2009 virus as a novel molecular method for diagnosis of pandemic influenza in resource-limited settings. J. Clin. Microbiol. 48(3), 728–735 (2010)
C. C. Li, I. A. Beck, K. D. Seidel, L. A. Frenkel, Persistence of human immunodeficiency virus type 1 subtype B DNA in dried-blood samples on FTA filter paper. J. Clin. Microbiol. 42(8), 3847–3849 (2004)
J. Li, J. Macdonald, Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens. Bioelectron. 64, 196–211 (2015)
J. C. Linnes, A. Fan, N. M. Rodriguez, B. Lemieux, H. Kong, C. M. Klapperich, Paper-based molecular diagnostic for Chlamydia trachomatis. RSC Adv. 4(80), 42245–42251 (2014)
C. Liu, E. Geva, M. Mauk, X. Qiu, W. R. Abrams, D. Malamud, K. Curtis, S. M. Owen, H. H. Bau, An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst 136(10), 2069–2076 (2011)
S. C. Low, R. Shaimi, Y. Thandaithabany, J. K. Lim, A. L. Ahmad, A. Ismail, Electrophoretic interactions between nitrocellulose membranes and proteins: Biointerface analysis and protein adhesion properties. Colloids Surf. B: Biointerfaces 110, 248–253 (2013)
Millipore, 33 mm Medical Millex Filter Units with Millipore Express membrane (Millipore Corporation, Bedford, MA, 2002), Rev. A 7/02 02–208: 2
L. L. M. Poon, B. W. Y. Wong, E. H. T. Ma, K. H. Chan, L. M. C. Chow, W. Abeyewickreme, N. Tangpukdee, K. Y. Yuen, Y. Guan, S. Looareesuwan, J. S. M. Peiris, Sensitive and inexpensive molecular test for falciparum malaria: Detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin. Chem. 52(2), 303–306 (2006)
U. Reischl, N. Lehn, G. N. Sanden, M. J. Loeffelholz, Real-time PCR assay targeting IS481 of Bordetella pertussis and molecular basis for detecting Bordetella holmesii. J. Clin. Microbiol. 39(5), 1963–1966 (2001)
N. M. Rodriguez, J. C. Linnes, A. Fan, C. K. Ellenson, N. R. Pollock, C. M. Klapperich, Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of influenza A (H1N1) from clinical specimens. Anal. Chem. 87(15), 7872–7879 (2015)
N. M. Rodriguez, W. S. Wong, L. Liu, R. Dewar, C. M. Klapperich, A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 16(4), 753–63 (2016)
B. A. Rohrman, V. Leautaud, E. Molyneux, R. R. Richards-Kortum, A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One 7(9), e45611 (2012)
B. A. Rohrman, R. R. Richards-Kortum, A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 12(17), 3082–3088 (2012)
T. B. Taylor, E. S. WinnDeen, E. Picozza, T. M. Woudenberg, M. Albin, Optimization of the performance of the polymerase chain reaction in silicon-based microstructures. Nucleic Acids Res. 25(15), 3164–3168 (1997)
A. D. Warren, G. A. Kwong, D. K. Wood, K. Y. Lin, S. N. Bhatia, Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl. Acad. Sci. U. S. A. 111(10), 3671–3676 (2014)
Whatman, Protran® Nitrocellulose Membranes. Proteomics and Glycomics Brochure (Whatman, Inc., Florham Park, 2004), p. 6
R. C. Wong, H. Y. Tse, Lateral Flow Immunoassay (Springer, New York, 2009)
Acknowledgments
This work was funded by NIH/NIAID F32-AI110023 (JCL) and NIH U54-EB015403 (CMK, NMR, LL) as well as the National Science Foundation Graduate Research Fellowship (NMR) and a Diversity Administrative Supplement under NIH U54-EB015403-S1 (CMK, NMR).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
ESM 1
(DOCX 879 kb)
Rights and permissions
About this article
Cite this article
Linnes, J.C., Rodriguez, N.M., Liu, L. et al. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics. Biomed Microdevices 18, 30 (2016). https://doi.org/10.1007/s10544-016-0057-z
Published:
DOI: https://doi.org/10.1007/s10544-016-0057-z