Skip to main content
Log in

Impact of the chemical composition of poly-substituted hydroxyapatite particles on the in vitro pro-inflammatory response of macrophages

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

To improve the biological properties of calcium phosphate (CaP) bone substitute, new chemical compositions are under development. In vivo such materials are subject to degradation that could lead to particles release and inflammatory reactions detrimental to the bone healing process. This study aimed at investigating the interactions between a murine macrophage cell line (RAW 264.7) and substituted hydroxyapatite particles presenting promising biological properties. Micron size particles of stoichiometric and substituted hydroxyapatites (CO3 substitution for PO4 and OH; SiO4 substitution for PO4; CO3 and SiO4 co-substitution) were obtained by aqueous precipitation followed by spray drying. Cells, incubated with four doses of particles ranging from 15 to 120 μg/mL, revealed no significant LDH release or ROS production, indicating no apparent cytotoxicity and no oxidative stress. TNF-α production was independent of the chemistry of the particles; however the particles elicited a significant dose-dependent pro-inflammatory response. As micron size particles of these hydroxyapatites could be at the origin of inflammation, attention must be paid to the degradation behavior of substituted hydroxyapatite bone substitute in order to limit, in vivo, the generation of particulate debris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • J.M. Anderson, A Rodriguez, DT Chang. Semin. Immunol. 20, 86 (2008)

  • L.T. Bang, BD Long, R Othman. Sci. World J. 2014, 9 (2014)

  • J. Barralet, M Akao, H Aoki, H Aoki. J. Biomed. Mater. Res. 49, 176 (2000)

  • H. Benhayoune, E. Jallot, P. Laquerriere, G. Balossier, P. Bonhomme, P. Frayssinet, Biomaterials 21, 235 (2000)

    Article  Google Scholar 

  • G. Bouet, D Marchat, M Cruel, L Malaval, L Vico. Tissue engineering Part B, Reviews 21, 133 (2015)

  • A. Boyer, D. Marchat, D. Bernache-Assollant, Key Eng. Mater. 529-530, 100 (2013)

    Article  Google Scholar 

  • V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, W. Lattanzi, G. Logroscino, J. Mater. Sci-Mater M. 25, 2445 (2014)

    Article  Google Scholar 

  • E. M. Carlisle, Science 167, 279 (1970)

    Article  Google Scholar 

  • E. M. Carlisle, Science 178, 619 (1972)

    Article  Google Scholar 

  • J. M. Curran, J. A. Gallagher, J. A. Hunt, Biomaterials 26, 5313 (2005)

    Article  Google Scholar 

  • R. Detsch, H. Mayr, G. Ziegler, Acta Biomater. 4, 139 (2008)

    Article  Google Scholar 

  • S. V. Dorozhkin, M. Epple, Angew. Chem. Int. Ed. 41, 3130 (2002)

    Article  Google Scholar 

  • M. K. Heljak, W. Święszkowski, C. X. F. Lam, D. W. Hutmacher, K. J. Kurzydłowski, Int. J. Numer. Methods. Biomed. Eng. 28, 789 (2012)

    Article  Google Scholar 

  • K.A. Hing, LF Wilson, T Buckland. The spine journal: official journal of the North American Spine Society 7, 475 (2007)

  • E. Ingham, J. Fisher, Biomaterials 26, 1271 (2005)

    Article  Google Scholar 

  • R Jugdaohsingh. The journal of nutrition, health & aging 11, 99 (2007)

    Google Scholar 

  • J. P. Lafon, E. Champion, D. Bernache-Assollant, R. Gibert, A. M. Danna, J. Therm. Anal. Calorim. 72, 1127 (2003)

    Article  Google Scholar 

  • J. P. Lafon, E. Champion, D. Bernache-Assollant, J. Eur. Ceram. Soc. 28, 139 (2008)

    Article  Google Scholar 

  • E. Landi, G. Celotti, G. Logroscino, A. Tampieri, J. Eur. Ceram. Soc. 23, 2931 (2003)

    Article  Google Scholar 

  • E. Landi, J. Uggeri, S. Sprio, A. Tampieri, S. Guizzardi, J. Biomed. Mater. Res. A. 94A, 59 (2010)

    Article  Google Scholar 

  • T. Lange, A. F. Schilling, F. Peters, F. Haag, M. M. Morlock, J. M. Rueger, M. Amling, Biomaterials 30, 5312 (2009)

    Article  Google Scholar 

  • T. Lange, A. F. Schilling, F. Peters, J. Mujas, D. Wicklein, M. Amling, Biomaterials 32, 4067 (2011)

    Article  Google Scholar 

  • P. Laquerriere, A. Grandjean-Laquerriere, E. Jallot, G. Balossier, P. Frayssinet, M. Guenounou, Biomaterials 24, 2739 (2003)

    Article  Google Scholar 

  • J. Lu, M. C. Blary, S. Vavasseur, M. Descamps, K. Anselme, P. Hardouin, J Mater Sci Mater Med 15, 361 (2004)

    Article  Google Scholar 

  • D. Marchat, M. Zymelka, C. Coelho, L. Gremillard, L. Joly-pottuz, F. Babonneau, C. Esnouf, J. Chevalier, D. Bernache-assollant, Acta Biomater. 9, 6992 (2013)

    Article  Google Scholar 

  • J.T. Ninomiya, JA Struve, CT Stelloh, JM Toth, KE Crosby. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 19, 621 (2001)

  • A. Oryan, S. Alidadi, A. Moshiri, N. Maffulli, J. Orthop. Surg. Res. 9, 18 (2014)

    Article  Google Scholar 

  • K. Pavankumar, K. Venkateswarlu, N. Rameshbabu, V. Muthupandi, Key Eng. Mater. 493-494(739) (2011)

  • D.P. Pioletti, H Takei, T Lin, P Van Landuyt, Q Jun Ma, S Yong Kwon, KL Paul Sung. Biomaterials 21, (2000)

  • J.A. Planell, M Navarro. In: JA Planell, SM Best, D Lacroix, A Merolli (ed.), Bone Repair Biomaterials. Woodhead Publishing, Cambridge, 2009, pp. 3–24

  • A. Porter, N Patel, R Brooks, S Best, N Rushton, W Bonfield. J. Mater. Sci. Mater. Med. 16, 899 (2005)

  • S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Biomaterials 23, 1065 (2002a)

    Article  Google Scholar 

  • S. Raynaud, E. Champion, J. P. Lafon, D. Bernache-Assollant, Biomaterials 23, 1081 (2002b)

    Article  Google Scholar 

  • D. M. Reffitt, N. Ogston, R. Jugdaohsingh, H. F. J. Cheung, B. A. J. Evans, R. P. H. Thompson, J. J. Powell, G. N. Hampson, Bone 32, 127 (2003)

    Article  Google Scholar 

  • C. Rey, B. Collins, T. Goehl, I. R. Dickson, M. J. Glimcher, Calcif. Tissue Int. 45, 157 (1989)

    Article  Google Scholar 

  • C. Rey, C Combes, C Drouet, MJ Glimcher. Osteoporosis Int. 20, 1013 (2009)

  • A. Salitsky. The Raw 264.7 Cell Line: A Valid Candidate for Studying Macrophage Activation: Hahnemann University, Department of Microbiology and Immunology; 1983.

  • A. S. Shanbhag, J. J. Jacobs, J. Black, J. O. Galante, T. T. Glant, J Biomed Mater Res 28, 81 (1994)

    Article  Google Scholar 

  • J.H. Shepherd, DV Shepherd, SM Best. J Mater Sci Mater Med 23, 2335 (2012)

  • G. Spence, N Patel, R Brooks, N Rushton. J. Biomed. Mater. Res. A. 90, 217 (2009)

  • G. Spence, N. Patel, R. Brooks, W. Bonfield, N. Rushton, J Biomed Mater Res A 92, 1292 (2010)

    Google Scholar 

  • F. Velard, J. Braux, J. Amedee, P. Laquerriere, Acta Biomater. 9, 4956 (2013)

    Article  Google Scholar 

  • Y. Zhang, M. Yan, A. Yu, H. Mao, J. Zhang, Toxicology 297, 57 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Agathe Figarol and Andréa Kurtz-Chalot for their help regarding the biological evaluation of the particles. The authors wish to thank the IFRESIS (Institut Fédératif de Recherche en Sciences et Ingénierie de la Santé) for the financial support provided for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Douard.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douard, N., Leclerc, L., Sarry, G. et al. Impact of the chemical composition of poly-substituted hydroxyapatite particles on the in vitro pro-inflammatory response of macrophages. Biomed Microdevices 18, 27 (2016). https://doi.org/10.1007/s10544-016-0056-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0056-0

Keywords

Navigation