Skip to main content
Log in

Single step neutravidin patterning: a lithographic approach for patterning proteins

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Protein patterning on surfaces is studied extensively for its potential use in proteomic, nanostructures, drug delivery and sensing. Patterning of proteins at micro and nano scales is especially important not only to understand the function of patterned protein but also to study its interaction with subsequent layers of bio-molecules/cells. Micro scale protein patterning is especially difficult due to the fragile nature of proteins. The already available methods either involve complex chemistries or are specific to a few proteins. Thus, in this regard, a versatile approach to pattern proteins using neutravidin is developed. With this approach of lithography and subsequent lift-off of the photoresist, any biotinylated moiety can be patterned at micron scale resolution. Functionality of patterned neutravidin is confirmed by showing binding of biotinylated polystyrene beads and biotinylated antibodies. In addition, stronger physisorption of neutravidin on bare glass surface, as a result of acetone lift-off, helps sustain the protein layers onto the glass surface without the need of chemical immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • E. Bat, J. Lee, U. Y. Lau, H. D. Maynard, Nat. Commun. 6, 6654 (2015)

    Article  Google Scholar 

  • A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, H. Biebuyck, Langmuir 14, 2225 (1998)

    Article  Google Scholar 

  • M. P. Byfield, R. A. Abuknesha, Biosens. Bioelectron. 9, 373 (1994)

    Article  Google Scholar 

  • S. Chen, L. Li, C. Zhao, J. Zheng, Polymer (Guildf). 51, 5283 (2010)

    Article  Google Scholar 

  • K. L. Christman, M. V. Requa, V. D. Enriquez-Rios, S. C. Ward, K. A. Bradley, K. L. Turner, H. D. Maynard, Langmuir 22, 7444 (2006)

    Article  Google Scholar 

  • C. Z. Dinu, J. Opitz, W. Pompe, J. Howard, M. Mertig, S. Diez, Small 2, 1090 (2006)

    Article  Google Scholar 

  • A. Douvas, P. Argitis, C. D. Diakoumakos, K. Misiakos, D. Dimotikali, S. E. Kakabakos, J. Vac, Sci. Technol. B Microelectron. Nanom. Struct. 19, 2820 (2001)

    Article  Google Scholar 

  • J.-P. Frimat, M. Bronkhorst, B. de Wagenaar, J. G. Bomer, F. van der Heijden, A. van den Berg, L. I. Segerink, Lab Chip 14, 2635 (2014)

    Article  Google Scholar 

  • X. Han, X. Sun, T. He, S. Sun, Langmuir 31, 140 (2015)

    Article  Google Scholar 

  • H. Hess, J. Clemmens, C. Brunner, R. Doot, S. Luna, K.-H. Ernst, V. Vogel, Nano Lett. 5, 629 (2005)

    Article  Google Scholar 

  • J. D. Hoff, L.-J. Cheng, E. Meyhöfer, L. J. Guo, A. J. Hunt, Nano Lett. 4, 853 (2004)

    Article  Google Scholar 

  • Y.-M. Huang, M. Uppalapati, W. O. Hancock, T. N. Jackson, Lab Chip 8, 1745 (2008)

    Article  Google Scholar 

  • B. Ilic, H. G. Craighead, Biomed. Microdevices 2, 317 (2000)

    Article  Google Scholar 

  • J. Jiang, X. Li, W. C. Mak, D. Trau, Adv. Mater. 20, 1636 (2008)

    Article  Google Scholar 

  • P. Jonkheijm, D. Weinrich, H. Schröder, C. M. Niemeyer, H. Waldmann, Angew. Chem. Int. Ed. Engl. 47, 9618 (2008)

    Article  Google Scholar 

  • S. Jung, B. Angerer, F. Löscher, S. Niehren, J. Winkle, S. Seeger, Chembiochem 7, 900 (2006)

    Article  Google Scholar 

  • R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, G. M. Whitesides, Biomaterials 20, 2363 (1999)

    Article  Google Scholar 

  • M. Kim, J.-C. Choi, H.-R. Jung, J. S. Katz, M.-G. Kim, J. Doh, Langmuir 26, 12112 (2010)

    Article  Google Scholar 

  • N. Li, C.-M. Ho, J. Assoc. Lab. Autom. 13, 237 (2008)

    Article  Google Scholar 

  • Y. Li, J. Zhang, W. Liu, D. Li, L. Fang, H. Sun, B. Yang, ACS Appl. Mater. Interfaces 5, 2126 (2013)

    Article  Google Scholar 

  • W. Liu, Y. Li, T. Wang, D. Li, L. Fang, S. Zhu, H. Shen, J. Zhang, H. Sun, B. Yang, ACS Appl. Mater. Interfaces 5, 12587 (2013a)

    Article  Google Scholar 

  • W. Liu, Y. Li, B. Yang, Sci. China Chem. 56, 1087 (2013b)

    Article  Google Scholar 

  • P. Manandhar, L. Huang, J. R. Grubich, J. W. Hutchinson, P. B. Chase, S. Hong, Langmuir 21, 3213 (2005)

    Article  Google Scholar 

  • T. Masters, W. Engl, Z. L. Weng, B. Arasi, N. Gauthier, V. Viasnoff, PLoS One 7, e44261 (2012)

    Article  Google Scholar 

  • T. Ozeki, V. Verma, M. Uppalapati, Y. Suzuki, M. Nakamura, J. M. Catchmark, W. O. Hancock, Biophys. J. 96, 3305 (2009)

    Article  Google Scholar 

  • N. Patel, R. Bhandari, K. M. Shakesheff, S. M. Cannizzaro, M. C. Davies, R. Langer, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Biomater. Sci. Polym. Ed. 11, 319 (2000)

    Article  Google Scholar 

  • V. Verma, W. O. Hancock, J. M. Catchmark, Adv. Packag. IEEE Trans. 28, 584 (2005a)

    Article  Google Scholar 

  • V. Verma, W. O. Hancock, and J. M. Catchmark, in IMAPS 38th Int. Symp. Microelectron. Philadelphia (2005b), pp. 244–49

  • V. Verma, W. Hancock, J. Catchmark, Biomed. Microdevices 11, 313 (2009)

    Article  Google Scholar 

  • P. Vermette, T. Gengenbach, U. Divisekera, P. A. Kambouris, H. J. Griesser, L. Meagher, J. Colloid Interface Sci. 259, 13 (2003)

    Article  Google Scholar 

  • M. Vijayalakshmi, Trends Biotechnol. 7, 71 (1989)

    Article  Google Scholar 

  • C. Wolf, Q. Li, Langmuir 26, 12068 (2010)

    Article  Google Scholar 

  • Y. Xia, G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998)

    Article  Google Scholar 

  • F. Xu, G. Zhen, F. Yu, E. Kuennemann, M. Textor, W. Knoll, J. Am. Chem. Soc. 127, 13084 (2005)

    Article  Google Scholar 

  • Z. Yang, A. Chilkoti, Adv. Mater. 12, 413 (2000)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by DST fast track [SR/FTP/ETA-31/2010], DBT [BT/PR14121/BRB/10/813/201] and thematic unit of excellence on soft nanofabrication with applications in energy, environment and bio-platforms at IIT Kanpur [SR/NM/NS-08/2011(G)]. SV thanks Council for Scientific and Industrial Research for providing the student fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Belay, M. & Verma, V. Single step neutravidin patterning: a lithographic approach for patterning proteins. Biomed Microdevices 18, 29 (2016). https://doi.org/10.1007/s10544-016-0053-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0053-3

Keywords

Navigation