Skip to main content

Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle

Abstract

Knowing the concentrations of biological substances can help ascertain physiological and pathological states. In the present study, a minimally invasive microperfusion needle was developed for measuring the concentrations of biological substances in subepidermal tissue. The microperfusion needle has a flow channel with a perforated membrane through which biological substances from subepidermal tissue are extracted. Since this device uses a thin steel acupuncture needle as the base substrate, it has sufficient rigidity for insertion through the skin. The efficacy of the needle was examined by measuring lactate and glucose concentrations in mice. Lactate was injected intraperitoneally, and changes in lactate concentrations in subepidermal tissue over time were measured using the device. Lactate concentrations of blood were also measured as a reference. Lactate was successfully collected using the microperfusion needle, and the lactate concentration of perfused saline was significantly correlated with blood lactate concentration. Glucose solution was administered orally, and the glucose concentration of perfused saline was also correlated with blood glucose concentration. The newly developed microperfusion needle can be used for minimally invasive monitoring of the concentrations of biological substances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • R. Boellaard, A. van Lingen, S. C. M. van Balen, B. G. Hoving, A. A. Lammertsma, Eur. J. Nucl. Med. 28, 81–89 (2001)

    Article  Google Scholar 

  • J. Bolinder, U. Ungerstedt, P. Arner, Lancet 342, 1080–1085 (1993)

    Article  Google Scholar 

  • J. de Boer, F. Postema, H. Plijter-Groendijk, J. Korf, Pflugers Arch. 419, 1–6 (1991)

    Article  Google Scholar 

  • J. de Boer, H. Plijter-Groendijk, J. Korf, Eur. Lancet. 340, 547–548 (1992)

    Article  Google Scholar 

  • J. de Boer, H. Plijter-Groendijk, K. R. Visser, G. A. Mook, J. Korf, Eur. J. Appl. Physiol. 69, 281–286 (1994)

    Article  Google Scholar 

  • C. Douvin, D. Simon, H. Zinelabidine, V. Wirquin, L. Perlemuter, D. Dhumeaux, N. Engl, J. Med. 322, 57–58 (1990)

    Google Scholar 

  • M. Ellmerer, L. Schaupp, Z. Trajanoski, G. Jobst, I. Moser, G. Urban, F. Skrabal, P. Wach, Biosens. Bioelectron. 13, 1007–1013 (1998)

    Article  Google Scholar 

  • M. H. Faridnia, G. Palleschi, G. J. Lubrano, G. G. Guilbault, Analytica. Chmica. Acta. 278, 35–40 (1993)

    Article  Google Scholar 

  • K. N. Frayn, S. W. Coppack, S. M. Humphreys, P. L. Whyte, Clin. Sci. 76, 509–516 (1989)

    Article  Google Scholar 

  • S. Goto, T. Matsunaga, J. J. Chen, W. Makishi, M. Esashi, Y. Haga, Proc. MMB, 217–220 (2006). doi:10.1109/MMB.2006.251532

  • M. Groschl, M. Rauh, Steroids 71, 1097–1100 (2006)

    Article  Google Scholar 

  • T. M. Gross, B. W. Bode, D. Einhorn, D. M. Kayne, J. H. Reed, N. H. White, J. J. Mastrototaro, Diabetes Technol. Ther. 2, 49–56 (2000)

    Article  Google Scholar 

  • Y. Hashiguchi, M. Sakakida, K. Nishida, T. Uemura, K.-I. Kajiwara, M. Shichiri, Diabetes Care 17, 387–396 (1994)

    Article  Google Scholar 

  • P.-A. Jansson, J. Fowelin, U. Smith, P. Lonnroth, Am. J. Physiol. 255, E218–E220 (1988)

    Google Scholar 

  • P.-A. Jansson, U. Smith, P. Lonnroth, Diabetologia 33, 253–256 (1990)

    Article  Google Scholar 

  • P. Lonnroth, P. –. A. Jansson, U. Smith, Am. J. Physiol. 253, E228–E231 (1987)

  • D. G. Maggs, R. Jacob, F. Rife, R. Lange, P. Leone, M. J. During, W. V. Tamborlane, R. S. Sherwin, J. Clin, Invest. 96, 370–377 (1995)

    Article  Google Scholar 

  • C. Meyerhoff, F. Bischof, F. Sternberg, H. Zier, E. F. Pfeiffer, Diabetologia 35, 1087–1092 (1992)

    Article  Google Scholar 

  • R. W. Min, V. Rajendran, N. Larsson, L. Gorton, J. Planas, B. Hahn-Hagerdal, Analytica. Chimica. Acta. 366, 127–135 (1998)

    Article  Google Scholar 

  • K. Mitsubayashi, M. Suzuki, E. Tamiya, I. Karube, Analytica. Chimica. Acta. 289, 27–34 (1994)

    Article  Google Scholar 

  • V. Rajendran, J. Irudayaraj, J. Dairy Sci. 85, 1357–1361 (2002)

    Article  Google Scholar 

  • A. C. F. Ribeiro, V. M. M. Lobo, D. G. Leaist, J. J. S. Natividade, L. P. Verissimo, M. C. F. Barros, A. M. T. D. P. V. Cabral, J. Solution Chem. 34, 1009–1016 (2005)

    Article  Google Scholar 

  • A. C. F. Ribeiro, O. Ortona, S. M. N. Simoes, C. I. A. V. Santos, P. M. R. A. Prazeres, A. J. M. Valente, V. M. M. Lobo, H. D. Burrows, J. Chem, Eng. Datas. 51, 1836–1840 (2006)

    Article  Google Scholar 

  • F. J. Schmidt, W. J. Sluter, A. J. M. Schoonen, Diabetes Care 16, 695–700 (1993)

    Article  Google Scholar 

  • F. Sternberg, C. Meyerhoff, F. J. Mennel, F. Bischof, E. F. Pfeiffer, Diabetes Care 18, 1266–1269 (1995)

    Article  Google Scholar 

  • R. K. Tanner, K. L. Fuller, M. L. R. Ross, Eur. J. Appl. Physiol. 109, 551–559 (2010)

    Article  Google Scholar 

  • O. Tochikubo, S. Uneda, Y. Kaneko, Hypertension 5, 270–274 (1983)

    Article  Google Scholar 

  • Z. Trajanoski, P. Wach, G. A. Brunner, T. R. Pieber, L. Schaupp, P. Kotanko, M. Ellmerer, F. Skarabal, Diabetes Care 20, 1114–1121 (1997)

    Article  Google Scholar 

  • T. Vering, S. Adam, H. Drewer, C. Dumschat, R. Steinkuhl, A. Schulze, E. G. Siegel, M. Knoll, Analyst 123, 1605–1609 (1998)

    Article  Google Scholar 

  • Q. Yang, P. Atanasov, E. Wilkins, Electroanalysis 10, 752–757 (1998)

    Article  Google Scholar 

  • J. D. Zahn, D. Trebotich, D. Liepmann, Biomed. Microdevices 7, 59–69 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by the Center of Innovation Program from Japan Science and Technology Agency, JST. This research is partially supported by Grant Program for Biomedical Engineering Research (Development Research) from Nakatani Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Tsuruoka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsuruoka, N., Ishii, K., Matsunaga, T. et al. Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle. Biomed Microdevices 18, 19 (2016). https://doi.org/10.1007/s10544-016-0049-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0049-z

Keywords

  • Microperfusion
  • Lactate measurement
  • Glucose measurement
  • Subepidermal
  • Non-planar microfabrication