Skip to main content
Log in

An integrated interface for peripheral neural system recording and stimulation: system design, electrical tests and in-vivo results

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The prototype of an electronic bi-directional interface between the Peripheral Nervous System (PNS) and a neuro-controlled hand prosthesis is presented. The system is composed of 2 integrated circuits: a standard CMOS device for neural recording and a HVCMOS device for neural stimulation. The integrated circuits have been realized in 2 different 0.35μ m CMOS processes available from ams. The complete system incorporates 8 channels each including the analog front-end, the A/D conversion, based on a sigma delta architecture and a programmable stimulation module implemented as a 5-bit current DAC; two voltage boosters supply the output stimulation stage with a programmable voltage scalable up to 17V. Successful in-vivo experiments with rats having a TIME electrode implanted in the sciatic nerve were carried out, showing the capability of recording neural signals in the tens of microvolts, with a global noise of 7μ V r m s , and to selectively elicit the tibial and plantar muscles using different active sites of the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • T. Akin, K. Najafi, R. Bradley, A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode. IEEE J. Solid State Circ. 33(1), 109–118 (1998). doi:10.1109/4.654942

    Article  Google Scholar 

  • C. Antfolk, M. D’Alonzo, M. Controzzi, G. Lundborg, B. Rosen, F. Sebelius, C. Cipriani, Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 21(1), 112–120 (2013). doi:10.1109/TNSRE.2012.2217989

    Article  Google Scholar 

  • S. Arfin, R. Sarpeshkar, An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. IEEE Trans. Biomed. Circuits Syst. 6(1), 1–14 (2012). doi:10.1109/TBCAS.2011.2166072

    Article  Google Scholar 

  • L. Bisoni, C. Carboni, L. Raffo, N. Carta, M. Barbaro, A hv-cmos integrated circuit for neural stimulation in prosthetic applications. IEEE Trans. Circ. Syst. II Express Briefs PP. 99, 1–1 (2015). doi:10.1109/TCSII.2014.2387679

    Google Scholar 

  • T. Boretius, A. Pascual-Font, E. Udina, T. Stieglitz, X. Navarro, Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (time) in the rat sciatic nerve. IEEE Trans. Biomed. Eng. 58(8), 2324–2332 (2011)

    Article  Google Scholar 

  • A. Borna, K. Najafi, A low power light weight wireless multichannel microsystem for reliable neural recording. IEEE J. Solid State Circ. 49(2), 439–451 (2014). doi:10.1109/JSSC.2013.2293773

    Article  Google Scholar 

  • C. Carboni, N. Carta, M. Barbaro, L. Raffo, A sigma-delta architecture for recording of peripheral neural signals in prosthetic applications. 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 448–453 (2012)

  • C.T. Clarke, X. Xu, R. Rieger, J. Taylor, N. Donaldson, An implanted system for multi-site nerve cuff-based eng recording using velocity selectivity. Analog Integr. Circ. Sig. Process. 58(2), 91–104 (2009)

    Article  Google Scholar 

  • A. Demosthenous, I. Pachnis, D. Jiang, N. Donaldson, An integrated amplifier with passive neutralization of myoelectric interference from neural recording tripoles. Sensors Journal IEEE. 13(9), 3236–3248 (2013). doi:10.1109/JSEN.2013.2271477

    Article  Google Scholar 

  • G.S. Dhillon, K.W. Horch, Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng., 468–472 (2005)

  • H. Gao, R. Walker, P. Nuyujukian, K. Makinwa, K. Shenoy, B. Murmann, T. Meng, Hermese: A 96-channel full data rate direct neural interface in 0.13 m cmos. IEEE J. Solid State Circuits. 47(4), 1043–1055 (2012)

    Article  Google Scholar 

  • B. Gosselin, A. Ayoub, J.F. Roy, M. Sawan, F. Lepore, A. Chaudhuri, D. Guitton, A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Trans. Biomed. Circuits Syst. 3(3), 129–141 (2009). doi:10.1109/TBCAS.2009.2013718

    Article  Google Scholar 

  • R.R. Harrison, A versatile integrated circuit for the acquisition of biopotentials. Custom Integrated Circuits Conference, 115–122 (2007)

  • R.R Harrison, C. Charles, A low-power low-noise cmos amplifier for neural recording applications. IEEE J. Solid State Circuits. 38, 958–965 (2003)

    Article  Google Scholar 

  • R.R. Harrison, R.J. Kier, C.A. Chestek, V. Gilja, P. Nuyujukian, S. Ryu, B. Greger, F Solzbacher, K.V. Shenoy, Wireless neural recording with single low-power integrated circuit. IEEE Trans. Neural Syst. Rehabil. Eng., 322–329 (2009)

  • J. He, C. Ma, R. Herman, Engineering neural interfaces for rehabilitation of lower limb function in spinal cord injured. Proc. of IEEE. 96(7), 1152–1166 (2008). doi:10.1109/JPROC.2008.922593

    Article  Google Scholar 

  • J. Lee, H.G. Rhew, D.R. Kipke, M.P. Flynn, A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic adc. IEEE J. Solid State Circuits. 45, 1935–1945 (2010)

    Article  Google Scholar 

  • X. Liu, A. Demosthenous, A. Vanhoestenberghe, D. Jiang, N. Donaldson, Active books: The design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes. IEEE Trans. Biomed. Circuits Syst. 6(3), 216–227 (2012)

    Article  Google Scholar 

  • D. Loi, C. Carboni, G. Angius, G. Angotzi, M. Barbaro, L. Raffo, S. Raspopovic, X. Navarro, Peripheral neural activity recording and stimulation system. IEEE Trans. Biomed. Circuits Syst. 5(4), 368–379 (2011). doi:10.1109/TBCAS.2011.2123097

    Article  Google Scholar 

  • C. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic, R. Puers, R. Yazicioglu, G. Gielen, An implantable 455-active-electrode 52-channel cmos neural probe. IEEE J. Solid State Circuits. 49(1), 248–261 (2014). doi:10.1109/JSSC.2013.2284347

    Article  Google Scholar 

  • S. Micera, J. Carpaneto, S. Raspopovic, Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng. 3, 48–68 (2010a). doi:10.1109/RBME.2010.2085429

    Article  Google Scholar 

  • S. Micera, L. Citi, J. Rigosa, J. Carpaneto, S. Raspopovic, G. Di Pino, L. Rossini, K. Yoshida, L. Denaro, P. Dario, PM. Rossini, Decoding information from neural signals recorded using intraneural electrodes: Toward the development of a neurocontrolled hand prosthesis. Proc. of IEEE. 98(3), 407–417 (2010b)

    Article  Google Scholar 

  • M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans. Biomed. Circuits Syst. 3(6), 388–397 (2009). doi:10.1109/TBCAS.2009.2031877

    Article  Google Scholar 

  • X. Navarro, T.B. Krueger, N. Lago, S. Micera, T. Stieglitz, P. Dario, A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses anf hybrid bionic systems. J. Peripher. Nerv. Syst., 229–258 (2005)

  • W. Patterson, Y.K. Song, C. Bull, I. Ozden, A. Deangellis, C. Lay, J. McKay, A. Nurmikko, J. Donoghue, B. Connors, A microelectrode/microelectronic hybrid device for brain implantable neuroprosthesis applications. IEEE Trans. Biomed. Eng. 51(10), 1845–1853 (2004). doi:10.1109/TBME.2004.831521

    Article  Google Scholar 

  • S. Raspopovic, M. Capogrosso, J. Badia, X. Navarro, S. Micera, Experimental validation of a hybrid computational model for selective stimulation using transverse intrafascicular multichannel electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 20(3), 395–404 (2012). doi:10.1109/TNSRE.2012.2189021

    Article  Google Scholar 

  • S. Raspopovic, M. Capogrosso, F.M. Petrini, M. Bonizzato, J. Rigosa, G. Di Pino, J. Carpaneto, M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C.M. Oddo, L. Citi, A.L. Ciancio, C. Cipriani, M.C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P.M. Rossini, S. Micera, Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(222), 222ra19 (2014). doi:10.1126/scitranslmed.3006820

    Article  Google Scholar 

  • B. Razavi, Design of analog cmos integrated circuits. McGRAW HILL International Edition (2001)

  • R. Rieger, J. Taylor, A. Demosthenous, N. Donaldson, P.J. Langlois, Design of a low-noise preamplifier for nerve cuff electrode recording. IEEE J. Solid State Circuits. 38(8), 1373–1379 (2003)

    Article  Google Scholar 

  • R. Rieger, M. Schuettler, D. Pal, C. Clarke, P. Langlois, J. Taylor, N. Donaldson, Very low-noise eng amplifier system using cmos technology. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 427–437 (2006)

    Article  Google Scholar 

  • M. Roham, D. Covey, D. Daberkow, E. Ramsson, C. Howard, B. Heidenreich, P. Garris, P. Mohseni, A wireless ic for time-share chemical and electrical neural recording. IEEE J. Solid State Circuits. 44(12), 3645–3658 (2009). doi:10.1109/JSSC.2009.2035549

    Article  Google Scholar 

  • J. Sacristán-Riquelme, M. Osés, Implantable stimulator and recording device for artificial prosthesis control. Microelectron. J. 38, 1135–1149 (2007)

    Article  Google Scholar 

  • R. Schreier, C.T. Gabor, Understanding delta sigma data converters. IEEE Press/Wiley-Interscience (2001)

  • F. Shahrokhi, K. Abdelhalim, D. Serletis, P.L. Carlen, R. Genov, The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4, 149–161 (2010)

    Article  Google Scholar 

  • M. Velliste, S. Perel, M. Spalding, A. Whitford, A. Schwartz, Cortical control of a prosthetic arm for self-feeding. Nature. 453, 1098–1101 (2008)

    Article  Google Scholar 

  • S. Venkatraman, K. Elkabany, J.D. Long, Y. Yao, J.M. Carmena, A system for neural recording and closed-loop intracortical microstimulation in awake rodents. IEEE Trans. Biomed. Eng. 56, 15–22 (2009)

    Article  Google Scholar 

  • C. Veraart, W. Grill, J. Mortimer, Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans. Biomed. Eng. 40(7), 640–653 (1993). doi:10.1109/10.237694

    Article  Google Scholar 

  • Y. Wang, Z. Wang, X. Lu, H. Wang, Fully integrated and low power cmos amplifier for neural signal recording. IEEE Engineering in Medicine and Biology Society, 5250–5230 (2005)

  • W. Wattanapanitch, R. Sarpeshkar, A low-power 32-channel digitally programmable neural recording integrated circuit. IEEE Trans. Biomed. Eng. 5(6), 593–602 (2011)

    Google Scholar 

  • W. Wattanapanitch, M. Fee, R. Sarpeshkar, An energy-efficient micropower neural recording amplifier. IEEE Trans. Biomed. Circuits Syst. 1, 136–147 (2007)

    Article  Google Scholar 

  • I. Williams, T. Constandinou, An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(2), 129–139 (2013). doi:10.1109/TBCAS.2013.2256906

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by MIUR (Italian Ministry of Education, University and Research) through project HANDBOT (PRIN 2010/2011), by Italian Ministry of Health through project NEMESIS and by the European Commission, ICT-2013.9.6 FET Proactive: Evolving Living Technologies (EVLIT), through project NEBIAS (n.611687). L. Bisoni gratefully acknowledges Sardinia Regional Government for the financial support of his Ph.D. scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2007-2013 - Axis IV Human Resources, Objective l.3, Line of Activity l.3.1.). C. Carboni and N. Carta gratefully acknowledge Sardinia Regional Government for the financial support to their research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Carboni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carboni, C., Bisoni, L., Carta, N. et al. An integrated interface for peripheral neural system recording and stimulation: system design, electrical tests and in-vivo results. Biomed Microdevices 18, 35 (2016). https://doi.org/10.1007/s10544-016-0043-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0043-5

Keywords

Navigation