Metanephrine neuroendocrine tumor marker detection by SERS using Au nanoparticle/Au film sandwich architecture

Abstract

Neuroendocrine tumors, such as pheochromocytoma or paraganglioma, are dangerous tumors that constitute a potential threat for a large number of patients. Currently, the biochemical diagnosis of neuroendocrine tumors is based on measurement of the direct secretory products of the adrenomedullary-sympathetic system or of their metabolites, such as catecholamines or their metanephrine derivatives, from plasma or urine. The techniques used for analysis of plasma free metanephrines, i.e. high-performance liquid chromatography or high-performance liquid chromatography coupled with mass-spectrometry are technically-demanding and time consuming, which limit their availability. Here we demonstrate a simple, fast and low-cost method for detecting metanephrine by Surface Enhanced Raman Scattering (SERS). The protocol consists in using evaporation-induced self-assembly of gold (Au) nanoparticles incubated with the analyte, on planar gold films. The assembly process produces regions with a dense distribution of both inter-particle gaps and particle-film gaps. Finite-difference time-domain simulations confirm that both kinds of gaps are locations of enhanced electromagnetic fields resulting from inter-particle and particle-film plasmonic coupling, useful for SERS amplification. Metanephrine vibrational bands assignment was performed according to density functional theory calculations. Metanephrine metabolite was detected in liquid at concentration levels lower than previously reported for other similar metabolites. The obtained results demonstrate that the Au nanoparticle/Au film exhibits noticeable SERS amplification of the adsorbed metabolite and can be used in the design of efficient, stable SERS-active substrates for the detection and identification of specific tumor markers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

HPLC:

High-performance liquid chromatography

SERS:

Surface Enhanced Raman Scattering

FDTD:

Finite-difference time-domain simulations

DFT:

Density functional theory

ELISA:

Enzyme-linked immunosorbent assay

AFM:

Atomic force microscopy

AuNPs:

Gold nanoparticles

TEM:

Transmission Electron Microscopy

References

  1. A. M. Alam, M. Kamruzzaman, S. H. Lee, Y. H. Kim, S. Y. Kim, G. M. Kim, H. J. Jo, S. H. Kim, Microchim Acta 176, 153 (2012)

    Article  Google Scholar 

  2. N. F. Atta, A. Galal, E. H. El-Ads, Analyst 137, 2658 (2012)

    Article  Google Scholar 

  3. M. Baia, S. Astilean, T. Iliescu, Springer Berlin Heidelberg, (2008)

    Google Scholar 

  4. A. D. Becke, Phys Rev A 38, 3098 (1988)

    Article  Google Scholar 

  5. A. D. Becke, J Chem Phys 98, 1372 (1993)

    Article  Google Scholar 

  6. S. C. Boca, C. Farcau, S. Astilean, Nucl Inst Methods Phys Res B 267, 406 (2009)

    Article  Google Scholar 

  7. A. Bouvrée, A. D. Orlando, T. Makiabadi, S. Martin, G. Louarn, J. Y. Mevellec, B. Humbert, Gold Bull 46, 283 (2013)

    Article  Google Scholar 

  8. J. G. Boyle, D. F. Davidson, C. G. Perry, J. M. C. Connell, J Clin Endocrinol Metab 92, 4602 (2007)

    Article  Google Scholar 

  9. G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, N. Reich, J Am Chem Soc 129, 6378 (2007)

    Article  Google Scholar 

  10. T. Chung, S. Y. Lee, E. Y. Song, H. Chun, B. Lee, Sensors 11, 10907 (2011)

    Article  Google Scholar 

  11. J. D. Driskell, R. J. Lipert, M. D. Porter, J Phys Chem B 110, 17444 (2006)

    Article  Google Scholar 

  12. C. L. Du, C. J. Du, Y. M. You, C. J. He, J. Luo, D. N. Shi, Plasmonics 7, 475 (2012)

    Article  Google Scholar 

  13. G. Eisenhofer, M. Walther, H. R. Keiser, J. W. M. Lenders, P. Friberg, K. Pacak, Braz J Med Biol Res 33, 1157 (2000)

    Article  Google Scholar 

  14. C. Farcau, S. Astilean, J Mol Struct 1073, 102 (2014)

    Article  Google Scholar 

  15. G. Frens, Nat Phys Sci 241, 20 (1973)

    Article  Google Scholar 

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, et al., Gaussian 03, Revision E.01-SMP (Gaussian, Inc., Pittsburgh PA, 2003)

    Google Scholar 

  17. V. Gardet, B. Gatta, G. Simonnet, A. Tabarin, G. Chêne, D. Ducassou, J. B. Corcuff, J Hypertens 19, 1029 (2001)

    Article  Google Scholar 

  18. E. Gerlo, C. Sevens, Ann Surg 243, 102 (1994)

    Google Scholar 

  19. E. A. Gerlo, C. Sevens, Clin Chem 40, 250 (2006)

    Google Scholar 

  20. C. Girard, E. Dujardin, G. Baffou, R. Quidant, New J Phys 10, 105016 (2008)

    Article  Google Scholar 

  21. J. Hallet, C. H. Law, M. Cukier, R. Saskin, N. Liu, S. Singh, Cancer 121, 589 (2015)

    Article  Google Scholar 

  22. V. M. Hallmark, A. Campion, J. Chem. Phys. 84, 2933 (1986)

    Article  Google Scholar 

  23. X. He, J. Gabler, C. Yuan, S. Wang, Y. Shi, M. Kozak, J Chromatogr B Anal Technol Biomed Life Sci 879, 2355 (2011)

    Article  Google Scholar 

  24. X. Hu, T. Wang, L. Wang, S. Dong, J Phys Chem C 111, 6962 (2007)

    Article  Google Scholar 

  25. H. Hwang, H. Chon, J. Choo, J. K. Park, Anal Chem 82, 7603 (2010)

    Article  Google Scholar 

  26. I. Ilias, K. Pacak, J Clin Endocrinol Metab 89, 479 (2004)

    Article  Google Scholar 

  27. K. Jeyaraman, V. Natarajan, N. Thomas, P. M. Jacob, A. Nair, N. Shanthly, R. Oommen, G. Varghese, F. J. Joseph, M. S. Seshadri, S. Rajaratnam, Ind J Med Res 137, 316 (2013)

    Google Scholar 

  28. W. F. J. Young, Eur. J Endourol 136, 28 (1997)

    Article  Google Scholar 

  29. K. Kneipp, M. Moskovits, H. Kneipp, Springer Berlin Heidelberg, (2006)

    Google Scholar 

  30. I. A. Larmour, D. Graham, Analyst 136, 3831 (2011)

    Article  Google Scholar 

  31. N. S. Lee, Y. Z. Hsieh, R. F. Paisley, M. D. Morris, Anal Chem 60, 442 (1988)

    Article  Google Scholar 

  32. J. W. Lenders, G. Eisenhofer, M. Mannelli, K. Pacak, Lancet 366, 665 (2005)

    Article  Google Scholar 

  33. J. W. Lenders, H. R. Keiser, D. S. Goldstein, J. J. Willemsen, P. Friberg, M. C. Jacobs, P. W. Kloppenborg, T. Thien, G. Eisenhofer, Ann Intern Med 123, 101 (1995)

    Article  Google Scholar 

  34. J. W. Lenders, K. Pacak, M. W. McClellan, W. M. Linehan, M. Mannelli, P. Friberg, H. R. Keiser, D. S. Goldstein, G. Eisenhofer, J Am Med Assoc 287, 1427 (2002)

    Article  Google Scholar 

  35. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, S. H. Oh, Rep Prog Phys 75, 036501 (2012)

    Article  Google Scholar 

  36. M. Moskovits, J. S. Suh, J Phys Chem 88, 5526 (1984)

    Article  Google Scholar 

  37. C. Mu, Q. Zhang, D. Wu, Y. Zhang, Q. Zhang, Biomed Chromatogr 29, 148 (2015)

    Article  Google Scholar 

  38. C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, P. C. White, Langmuir 11, 3712 (1995)

    Article  Google Scholar 

  39. C. J. Orendorff, A. Gole, T. K. Sau, C. J. Murphy, Anal Chem 77, 3261 (2005)

    Article  Google Scholar 

  40. M. K. Par, Bull Kor Chem Soc 13, 230 (1992)

    Google Scholar 

  41. W. H. Park, S. H. Ahn, Z. H. Kim, ChemPhysChem 9, 2491 (2008)

    Article  Google Scholar 

  42. J. P. Perdew, Y. Wang, Phys Rev B 45, 13244 (1992)

    Article  Google Scholar 

  43. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, C. M. Netti, Opt Express 14, 847 (2006)

    Article  Google Scholar 

  44. C. G. Perry, A. M. Sawka, R. Singh, L. Thabane, J. Bajnarek, W. F. J. Young, Clin Endocrinol 66, 703 (2007)

    Article  Google Scholar 

  45. M. Procopiou, H. Finney, S. A. Akker, S. L. Chew, W. M. Drake, J. Burrin, A. B. Grossman, Eur J Endocrinol 161, 131 (2009)

    Article  Google Scholar 

  46. W. Raber, W. Raffesberg, M. Bischof, C. Scheuba, B. Niederle, S. Gasic, W. Waldhäus, M. Roden, Arch Intern Med 160, 2957 (2000)

    Article  Google Scholar 

  47. G. Rauhut, P. J. Pulay, Phys Chem 99, 3093 (1995)

    Article  Google Scholar 

  48. E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, L. D. Marks, J Phys Chem Lett 3, 1479 (2012)

    Article  Google Scholar 

  49. A. M. Sawka, R. Jaeschke, R. J. Singh, W. F. Jr, Young, J. Clin Endocrinol Metab 88, 553 (2003)

    Article  Google Scholar 

  50. B. G. Taal, O. Visser, Neuroendocrinology 80(Suppl 1), 3 (2004)

    Article  Google Scholar 

  51. J. Turkevich, P. C. Stevenson, J. Hillier, Discuss Faraday Soc 11, 55 (1951)

    Article  Google Scholar 

  52. N. Unger, C. Pitt, I. L. Schmidt, M. K. Walz, K. W. Schmid, T. Philipp, K. Mann, S. Petersenn, Eur J Endocrinol 154, 409 (2003)

    Article  Google Scholar 

  53. W. Wang, Y. Yin, Z. Tana, J. Liu, Nanoscale 6, 9588 (2014)

    Article  Google Scholar 

  54. J. Yang, X. Tan, W.-C. Shih, M. M.-C. Cheng, Biomed Microdevices 16, 673 (2014)

    Article  Google Scholar 

  55. X. Ye, L. Qi, Nano Today 6, 608 (2011)

    Article  Google Scholar 

  56. H. Yuan, K. P. F. Janssen, T. Franklin, G. Lu, L. Su, X. Gu, H. Uji, M. B. J. Roeffaersab, J. Hofkens, RSC Adv 5, 6829 (2015)

    Article  Google Scholar 

  57. Z. Zhu, T. Zhu, Z. Liu, Nanotechnology 15, 357 (2004)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Babes-Bolyai University, Cluj-Napoca, Romania under the Research Grant for Young Scientists, Contract GTC-UBB No. 34056/2013. S. Boca acknowledges post-doctoral grant of the Romanian Ministry of Education, CNCS-UEFISCDI, Project number PN-II-RU-PD-2012-3-0111. M. Baia acknowledges COST action BM1401.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sanda Boca or Simion Astilean.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

Nanoparticle size distribution by dynamic light scattering (DLS), extinction spectra of colloidal gold nanoparticles mixed with various concentrations of metanephrine, SERS spectra of metanephrine in aged colloid, optical images of circular deposit made by gold nanoparticles on gold film. (DOCX 1130 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boca, S., Farcau, C., Baia, M. et al. Metanephrine neuroendocrine tumor marker detection by SERS using Au nanoparticle/Au film sandwich architecture. Biomed Microdevices 18, 12 (2016). https://doi.org/10.1007/s10544-016-0037-3

Download citation

Keywords

  • Gold nanoparticles
  • Nanobiosensor
  • SERS detection
  • Neuroendocrine tumor
  • Metanephrine