Biomedical Microdevices

, 18:12 | Cite as

Metanephrine neuroendocrine tumor marker detection by SERS using Au nanoparticle/Au film sandwich architecture

  • Sanda BocaEmail author
  • Cosmin Farcau
  • Monica Baia
  • Simion AstileanEmail author


Neuroendocrine tumors, such as pheochromocytoma or paraganglioma, are dangerous tumors that constitute a potential threat for a large number of patients. Currently, the biochemical diagnosis of neuroendocrine tumors is based on measurement of the direct secretory products of the adrenomedullary-sympathetic system or of their metabolites, such as catecholamines or their metanephrine derivatives, from plasma or urine. The techniques used for analysis of plasma free metanephrines, i.e. high-performance liquid chromatography or high-performance liquid chromatography coupled with mass-spectrometry are technically-demanding and time consuming, which limit their availability. Here we demonstrate a simple, fast and low-cost method for detecting metanephrine by Surface Enhanced Raman Scattering (SERS). The protocol consists in using evaporation-induced self-assembly of gold (Au) nanoparticles incubated with the analyte, on planar gold films. The assembly process produces regions with a dense distribution of both inter-particle gaps and particle-film gaps. Finite-difference time-domain simulations confirm that both kinds of gaps are locations of enhanced electromagnetic fields resulting from inter-particle and particle-film plasmonic coupling, useful for SERS amplification. Metanephrine vibrational bands assignment was performed according to density functional theory calculations. Metanephrine metabolite was detected in liquid at concentration levels lower than previously reported for other similar metabolites. The obtained results demonstrate that the Au nanoparticle/Au film exhibits noticeable SERS amplification of the adsorbed metabolite and can be used in the design of efficient, stable SERS-active substrates for the detection and identification of specific tumor markers.


Gold nanoparticles Nanobiosensor SERS detection Neuroendocrine tumor Metanephrine 



High-performance liquid chromatography


Surface Enhanced Raman Scattering


Finite-difference time-domain simulations


Density functional theory


Enzyme-linked immunosorbent assay


Atomic force microscopy


Gold nanoparticles


Transmission Electron Microscopy



This work was supported by Babes-Bolyai University, Cluj-Napoca, Romania under the Research Grant for Young Scientists, Contract GTC-UBB No. 34056/2013. S. Boca acknowledges post-doctoral grant of the Romanian Ministry of Education, CNCS-UEFISCDI, Project number PN-II-RU-PD-2012-3-0111. M. Baia acknowledges COST action BM1401.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10544_2016_37_MOESM1_ESM.docx (1.1 mb)
ESM 1 Nanoparticle size distribution by dynamic light scattering (DLS), extinction spectra of colloidal gold nanoparticles mixed with various concentrations of metanephrine, SERS spectra of metanephrine in aged colloid, optical images of circular deposit made by gold nanoparticles on gold film. (DOCX 1130 kb)


  1. A. M. Alam, M. Kamruzzaman, S. H. Lee, Y. H. Kim, S. Y. Kim, G. M. Kim, H. J. Jo, S. H. Kim, Microchim Acta 176, 153 (2012)CrossRefGoogle Scholar
  2. N. F. Atta, A. Galal, E. H. El-Ads, Analyst 137, 2658 (2012)CrossRefGoogle Scholar
  3. M. Baia, S. Astilean, T. Iliescu, Springer Berlin Heidelberg, (2008)Google Scholar
  4. A. D. Becke, Phys Rev A 38, 3098 (1988)CrossRefGoogle Scholar
  5. A. D. Becke, J Chem Phys 98, 1372 (1993)CrossRefGoogle Scholar
  6. S. C. Boca, C. Farcau, S. Astilean, Nucl Inst Methods Phys Res B 267, 406 (2009)CrossRefGoogle Scholar
  7. A. Bouvrée, A. D. Orlando, T. Makiabadi, S. Martin, G. Louarn, J. Y. Mevellec, B. Humbert, Gold Bull 46, 283 (2013)CrossRefGoogle Scholar
  8. J. G. Boyle, D. F. Davidson, C. G. Perry, J. M. C. Connell, J Clin Endocrinol Metab 92, 4602 (2007)CrossRefGoogle Scholar
  9. G. Braun, S. J. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, N. Reich, J Am Chem Soc 129, 6378 (2007)CrossRefGoogle Scholar
  10. T. Chung, S. Y. Lee, E. Y. Song, H. Chun, B. Lee, Sensors 11, 10907 (2011)CrossRefGoogle Scholar
  11. J. D. Driskell, R. J. Lipert, M. D. Porter, J Phys Chem B 110, 17444 (2006)CrossRefGoogle Scholar
  12. C. L. Du, C. J. Du, Y. M. You, C. J. He, J. Luo, D. N. Shi, Plasmonics 7, 475 (2012)CrossRefGoogle Scholar
  13. G. Eisenhofer, M. Walther, H. R. Keiser, J. W. M. Lenders, P. Friberg, K. Pacak, Braz J Med Biol Res 33, 1157 (2000)CrossRefGoogle Scholar
  14. C. Farcau, S. Astilean, J Mol Struct 1073, 102 (2014)CrossRefGoogle Scholar
  15. G. Frens, Nat Phys Sci 241, 20 (1973)CrossRefGoogle Scholar
  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, et al., Gaussian 03, Revision E.01-SMP (Gaussian, Inc., Pittsburgh PA, 2003)Google Scholar
  17. V. Gardet, B. Gatta, G. Simonnet, A. Tabarin, G. Chêne, D. Ducassou, J. B. Corcuff, J Hypertens 19, 1029 (2001)CrossRefGoogle Scholar
  18. E. Gerlo, C. Sevens, Ann Surg 243, 102 (1994)Google Scholar
  19. E. A. Gerlo, C. Sevens, Clin Chem 40, 250 (2006)Google Scholar
  20. C. Girard, E. Dujardin, G. Baffou, R. Quidant, New J Phys 10, 105016 (2008)CrossRefGoogle Scholar
  21. J. Hallet, C. H. Law, M. Cukier, R. Saskin, N. Liu, S. Singh, Cancer 121, 589 (2015)CrossRefGoogle Scholar
  22. V. M. Hallmark, A. Campion, J. Chem. Phys. 84, 2933 (1986)CrossRefGoogle Scholar
  23. X. He, J. Gabler, C. Yuan, S. Wang, Y. Shi, M. Kozak, J Chromatogr B Anal Technol Biomed Life Sci 879, 2355 (2011)CrossRefGoogle Scholar
  24. X. Hu, T. Wang, L. Wang, S. Dong, J Phys Chem C 111, 6962 (2007)CrossRefGoogle Scholar
  25. H. Hwang, H. Chon, J. Choo, J. K. Park, Anal Chem 82, 7603 (2010)CrossRefGoogle Scholar
  26. I. Ilias, K. Pacak, J Clin Endocrinol Metab 89, 479 (2004)CrossRefGoogle Scholar
  27. K. Jeyaraman, V. Natarajan, N. Thomas, P. M. Jacob, A. Nair, N. Shanthly, R. Oommen, G. Varghese, F. J. Joseph, M. S. Seshadri, S. Rajaratnam, Ind J Med Res 137, 316 (2013)Google Scholar
  28. W. F. J. Young, Eur. J Endourol 136, 28 (1997)CrossRefGoogle Scholar
  29. K. Kneipp, M. Moskovits, H. Kneipp, Springer Berlin Heidelberg, (2006)Google Scholar
  30. I. A. Larmour, D. Graham, Analyst 136, 3831 (2011)CrossRefGoogle Scholar
  31. N. S. Lee, Y. Z. Hsieh, R. F. Paisley, M. D. Morris, Anal Chem 60, 442 (1988)CrossRefGoogle Scholar
  32. J. W. Lenders, G. Eisenhofer, M. Mannelli, K. Pacak, Lancet 366, 665 (2005)CrossRefGoogle Scholar
  33. J. W. Lenders, H. R. Keiser, D. S. Goldstein, J. J. Willemsen, P. Friberg, M. C. Jacobs, P. W. Kloppenborg, T. Thien, G. Eisenhofer, Ann Intern Med 123, 101 (1995)CrossRefGoogle Scholar
  34. J. W. Lenders, K. Pacak, M. W. McClellan, W. M. Linehan, M. Mannelli, P. Friberg, H. R. Keiser, D. S. Goldstein, G. Eisenhofer, J Am Med Assoc 287, 1427 (2002)CrossRefGoogle Scholar
  35. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, S. H. Oh, Rep Prog Phys 75, 036501 (2012)CrossRefGoogle Scholar
  36. M. Moskovits, J. S. Suh, J Phys Chem 88, 5526 (1984)CrossRefGoogle Scholar
  37. C. Mu, Q. Zhang, D. Wu, Y. Zhang, Q. Zhang, Biomed Chromatogr 29, 148 (2015)CrossRefGoogle Scholar
  38. C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, P. C. White, Langmuir 11, 3712 (1995)CrossRefGoogle Scholar
  39. C. J. Orendorff, A. Gole, T. K. Sau, C. J. Murphy, Anal Chem 77, 3261 (2005)CrossRefGoogle Scholar
  40. M. K. Par, Bull Kor Chem Soc 13, 230 (1992)Google Scholar
  41. W. H. Park, S. H. Ahn, Z. H. Kim, ChemPhysChem 9, 2491 (2008)CrossRefGoogle Scholar
  42. J. P. Perdew, Y. Wang, Phys Rev B 45, 13244 (1992)CrossRefGoogle Scholar
  43. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, C. M. Netti, Opt Express 14, 847 (2006)CrossRefGoogle Scholar
  44. C. G. Perry, A. M. Sawka, R. Singh, L. Thabane, J. Bajnarek, W. F. J. Young, Clin Endocrinol 66, 703 (2007)CrossRefGoogle Scholar
  45. M. Procopiou, H. Finney, S. A. Akker, S. L. Chew, W. M. Drake, J. Burrin, A. B. Grossman, Eur J Endocrinol 161, 131 (2009)CrossRefGoogle Scholar
  46. W. Raber, W. Raffesberg, M. Bischof, C. Scheuba, B. Niederle, S. Gasic, W. Waldhäus, M. Roden, Arch Intern Med 160, 2957 (2000)CrossRefGoogle Scholar
  47. G. Rauhut, P. J. Pulay, Phys Chem 99, 3093 (1995)CrossRefGoogle Scholar
  48. E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, L. D. Marks, J Phys Chem Lett 3, 1479 (2012)CrossRefGoogle Scholar
  49. A. M. Sawka, R. Jaeschke, R. J. Singh, W. F. Jr, Young, J. Clin Endocrinol Metab 88, 553 (2003)CrossRefGoogle Scholar
  50. B. G. Taal, O. Visser, Neuroendocrinology 80(Suppl 1), 3 (2004)CrossRefGoogle Scholar
  51. J. Turkevich, P. C. Stevenson, J. Hillier, Discuss Faraday Soc 11, 55 (1951)CrossRefGoogle Scholar
  52. N. Unger, C. Pitt, I. L. Schmidt, M. K. Walz, K. W. Schmid, T. Philipp, K. Mann, S. Petersenn, Eur J Endocrinol 154, 409 (2003)CrossRefGoogle Scholar
  53. W. Wang, Y. Yin, Z. Tana, J. Liu, Nanoscale 6, 9588 (2014)CrossRefGoogle Scholar
  54. J. Yang, X. Tan, W.-C. Shih, M. M.-C. Cheng, Biomed Microdevices 16, 673 (2014)CrossRefGoogle Scholar
  55. X. Ye, L. Qi, Nano Today 6, 608 (2011)CrossRefGoogle Scholar
  56. H. Yuan, K. P. F. Janssen, T. Franklin, G. Lu, L. Su, X. Gu, H. Uji, M. B. J. Roeffaersab, J. Hofkens, RSC Adv 5, 6829 (2015)CrossRefGoogle Scholar
  57. Z. Zhu, T. Zhu, Z. Liu, Nanotechnology 15, 357 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-SciencesBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.Biomolecular Physics Department, Faculty of PhysicsBabes-Bolyai UniversityCluj-NapocaRomania
  3. 3.Institute of Oncology Prof. Dr. Ion ChiricutaCluj-NapocaRomania

Personalised recommendations