Skip to main content
Log in

Characterization of tight junction disruption and immune response modulation in a miniaturized Caco-2/U937 coculture-based in vitro model of the human intestinal barrier

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A microfluidic-based dynamic in vitro model of the human intestinal barrier has been constructed and characterized. The intestinal epithelial monolayer was mimicked by culturing caco-2 cells on a porous membrane in a double-layered microfluidic chip and interfaced with a co-culture of U937 as a model of immune responsive cells. The physiological flow was also mimicked by a continuous perfusion of culture media from the apical and basolateral side of the porous membrane. This dynamic “in vivo-like” environment maintains a continuous supply of cell nutrient and waste removal and create mechanical shear stress within the physiological ranges which promotes uniform cell growth and tight junction formation. The monolayer permeability to soluble ion changes after treating with LPS, and TNF α as indicated by the reduction of the TEER value. In addition, the immune competent caco-2/U937-based model allowed the investigating the role of the epithelial layer as a protection barrier to biological hazards as indicated by the suppressing of the pro-inflammatory cytokine expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • L. Ungell, J. Karlsson, in In Drug bioavailability; Estimation of Solubility, Permeability, Absorption and Bioavailability, ed. by H. van de Waterbeemd, H. Lennernas, P. Artursson. (Wiley-VCH 2003), (2003), pp. 90–131

  • A. Wikman-Larhed, P. Artursson, Eur. J. Pharm. Sci. 3, 171–183 (1995)

    Article  Google Scholar 

  • C. Halleux, Y.J. Schneider, in Vitro. Cell Dev. Biol, Vol. 27, (1991), pp. 293–302

  • C. Hilgendorf, H. Spahn-Langguth, C.G. Regårdh, E. Lipka, G.L. Amidon, P. Langguth, J. Pharm. Sci. 89, 63–75 (2000)

  • D Hollander, C.M. Vadheim, E. Brettholz, G.M. Petersen, T. Delahunty, J.I. Rotter, Ann. Intern. Med. 105, 883–885 (1986)

    Article  Google Scholar 

  • D. Huh, G.A. Hamilton, D.E. Ingber, Trends Cell. Biol. 21(12), 745–54 (2011)

    Article  Google Scholar 

  • F. Leonard, E.M. Collnot, C.M. Lehr, Mol. Pharm. 7(6), 2103–2119 (2010)

    Article  Google Scholar 

  • G. Nollevaux, C. Devillé, B. El Moualij, W. Zorzi, P. Deloyer, Y.J. Schneider, O. Peulen1, G. Dandrifosse, BMC Cell Biol. 7(20) (2006)

  • G.R. May, L.R. Sutherland, J.B. Meddings, Gastroenterol. 104, 1627–1632 (1993)

  • H.J. Kim, D. Huh, G. Hamiltonan, D.E. Ingber, Lab Chip. 12, 2165–2174 (2012)

    Article  Google Scholar 

  • J. Ando, K. Yamamoto, Cardiovasc. Res. 99, 260–268 (2013)

  • M. Ikenouchi, K. Furuse, H. Furuse, S. Sasaki, S. Tsukita, J. Tsukita, Cell Biol. 171, 939–945 (2005)

    Article  Google Scholar 

  • J.R. Pappenheimer, Am. J. Physiol. 265, G409–G417 (1993)

    Google Scholar 

  • K.R. Groschwitz, S.P. Hogan, J. Allergy. Clin. Immunol. 124, 3–20 (2009)

    Article  Google Scholar 

  • H. Ting, J.R. Jahn, J.I. Jung, B.R. Shuman, S. Feghhi, S.J. Han, M.L. Rodriguez, N.J. Sniadecki, Am. J Physiol. Heart. Circ. Physiol. 302, H2220–H2229 (2012)

    Article  Google Scholar 

  • L.S. Gan, D.R. Thakker, Adv. Drug Del. Rev. 23, 77–98 (1997)

    Article  Google Scholar 

  • M. Furuse, K. Fujita, T. Hiragi, S. Tsukita, J. Cell Biol. 141, 1539–1550 (1998)

    Article  Google Scholar 

  • M.T. Furuse, M. Hirase, M. Itoh, A. Nagafuchi, S. Yonemura, S. Tsukita, S. Tsukita, J. Cell Biol. 123, 1777–1788 (1993)

    Article  Google Scholar 

  • M. Yazdanian, S.L. Glynn, J.L. Wright, A. Hawi, Pharm. Res. 15, 1490–1494 (1998)

    Article  Google Scholar 

  • Q. Ramadan, H. Jafarpoorchekab, P. Silacci, S. Carrara, J. Ramsden, G. Vergeres, M.A.M. Gijs, Lab Chip. 13, 196–203 (2013)

    Article  Google Scholar 

  • M. Brand, T.L. Hannah, C. Muller, Y. Cetin, F.G. Hamel, Ann. Biomed. Eng. 28, 1210–1217 (2000)

    Article  Google Scholar 

  • C. Resta-Lenert, K.E. Barrett, Ann. N.Y. Acad. Sci. 1165, 175–182 (2009)

    Article  Google Scholar 

  • S. Guo, R. Al-Sadi, H.M. Said, T.Y. Ma. Am. J. Pathol. 182(2), 375–387 (2013)

    Article  Google Scholar 

  • W.V. Graham, A.M. Marchiando, L. Shen, J.R. Turner, Ann. N.Y. Acad. Sci. 1165, 314–322 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Agency for Science, Technology and Research (A*STAR) (Grant number: 1431AFG123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasem Ramadan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, Q., Jing, L. Characterization of tight junction disruption and immune response modulation in a miniaturized Caco-2/U937 coculture-based in vitro model of the human intestinal barrier. Biomed Microdevices 18, 11 (2016). https://doi.org/10.1007/s10544-016-0035-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0035-5

Keywords

Navigation