Skip to main content
Log in

The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Silk sericin is recently shown to possess various biological activities for biomedical applications. While various sericin carriers were developed for drug delivery system, very few researches considered sericin as a bioactive molecule itself. In this study, sericin incorporated in the chitosan-based microspheres was introduced as a bioactive molecule and bioactive carrier at the same time. The chitosan/sericin (CH/SS) microspheres at different composition (80/20, 70/30, 60/40, and 50/50) were successfully fabricated using anhydroustri-polyphosphate (TPP) as a polyanionic crosslinker. The microspheres with an average size of 1–4 μm and narrow size distribution were obtained. From FT-IR spectra, the presence of both chitosan and sericin in the microspheres confirmed the occurrence of ionic interaction that crosslink them within the microspheres. We also found that the CH/SS microspheres prepared at 50/50 could encapsulate sericin at the highest percentage (37.28 %) and release sericin in the most sustained behavior, possibly due to the strong ionic interaction of the positively charged chitosan and the negatively charged sericin. On the other hand, the composition of CH/SS had no effect on the degradation rate of microspheres. All microspheres continuously degraded and remained around 20 % after 14 days of enzymatic degradation. This explained that the ionic crosslinkings between chitosan and sericin could be demolished by the enzyme and hydrolysis. Furthermore, we have verified that all CH/SS microspheres at any concentrations showed non-toxicity to L929 mouse fibroblast cells. Therefore, we suggested that the non-toxic ionic-crosslinked CH/SS microspheres could be incorporated in wound dressing material to achieve the sustained release of sericin for accelerated wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • P. Aramwit, S. Kanokpanont, P. Punyarit, T. Srichana, Wounds 21, 198 (2009)

    Google Scholar 

  • P. Aramwit, S. Kanokpanont, T. Nakpheng, T. Srichana, Int. J. Mol. Sci. 11, 2200 (2010a)

    Article  Google Scholar 

  • P. Aramwit, T. Siritientong, S. Kanokpanont, T. Srichana, Int. J. Biol. Macromol. 47, 668 (2010b)

    Article  Google Scholar 

  • P. Aramwit, T. Siritientong, T. Srichana, Waste Manag. Res. 30, 217 (2012)

    Article  Google Scholar 

  • P. Aramwit, T. Siritienthong, T. Srichana, J. Ratanavaraporn, Cells Tissues Organs 197, 224 (2013)

    Article  Google Scholar 

  • R. Dash, C. Acharya, P.C. Bindu, S.C. Kundu, BMB Rep. 41, 236 (2007)

    Article  Google Scholar 

  • S. Ekgasit, N. Pattayakorn, D. Tongsakul, C. Thammacharoen, T. Kongyou, Anal. Sci. 23, 863 (2007)

    Article  Google Scholar 

  • J.B. Fan, L.P. Wu, L.S. Chen, X.Y. Mao, F.Z. Ren, J. Food Biochem. 33, 74 (2009)

    Article  Google Scholar 

  • S. Freiberg, X.X. Zhu, Int. J. Pharm. 282, 1 (2004)

    Article  Google Scholar 

  • F. Ganji, E. Vasheghani-Farahani, Iran. Polym. J. 18, 63 (2009)

    Google Scholar 

  • M.R. Khan, M. Tsukada, X. Zhang, H. Morikawa, J. Mater. Sci. 48, 3731 (2013)

    Article  Google Scholar 

  • T. Kitisin, P. Maneekan, N. Luplertlop, J. Agric. Sci. 5, 1916 (2013)

    Google Scholar 

  • J.A. Ko, H.J. Park, S.J. Hwang, J.B. Park, J.S. Lee, Int. J. Pharm. 249, 165 (2002)

    Article  Google Scholar 

  • S.C. Kundu, B.C. Dash, R. Dash, Prog. Polym. Sci. 33, 998 (2008)

    Article  Google Scholar 

  • K. Lee, H. Kweon, J.H. Yeo, S.O. Woo, Y.W. Lee, C.S. Cho, K.H. Kim, Y.H. Park, Int. J. Biol. Macromol. 33, 75 (2003)

    Article  Google Scholar 

  • B.B. Mandal, S.C. Kundu, Nanotechnology 20, 355101 (2009)

    Article  Google Scholar 

  • B.B. Mandal, A.S. Priya, S.C. Kundu, Acta Biomater. 5, 3007 (2009)

    Article  Google Scholar 

  • S. Masahiro, Y. Hideyuki, K. Norihisa, Nutr. Res. 20, 1505 (2000)

    Google Scholar 

  • L.N. Mengatto, I.M. Helbling, J.A. Luna, Recent Pat. Drug Deliv. Formul. 6, 156 (2012)

    Article  Google Scholar 

  • F.L. Mi, Y.C. Tan, H.F. Liang, H.W. Sung, Biomaterials 23, 181 (2002)

    Article  Google Scholar 

  • M. Morikawa, T. Kimura, M. Murakami, K. Katayama, S. Terada, A. Yamaguchi, J. Hepatobiliary Pancreat. Surg. 16, 223 (2009)

    Article  Google Scholar 

  • T. Mosmann, J. Immunol. Methods 65, 55 (1983)

    Article  Google Scholar 

  • A. Nascimento, M.C. Laranjeira, V.T. Favere, A. Josue, J. Microencapsul. 18, 679 (2001)

    Article  Google Scholar 

  • S. Nayak, S. Dey, S.C. Kundu, Int. J. Biol. Macromol. 65, 258 (2014)

    Article  Google Scholar 

  • J. O’Regan, D.M. Mulvihill, Food Chem. 119, 182 (2010)

    Article  Google Scholar 

  • N. Shanmugasundaram, P. Ravichandran, P.R. Neelakanta, N. Ramamurty, S. Pal, K.P. Rao, Biomaterials 22, 1943 (2001)

    Article  Google Scholar 

  • X.Z. Shu, K.J. Zhu, Int. J. Pharm. 201, 51 (2000)

    Article  Google Scholar 

  • X.Z. Shu, K.J. Zhu, J. Microencapsul. 18, 237 (2001)

    Article  Google Scholar 

  • V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal, S. Dhawan, Int. J. Pharm. 274, 1 (2004)

    Article  Google Scholar 

  • A. Sionkowska, M. Wisniewski, J. Skopinska, C.J. Kennedy, T.J. Wess, Biomaterials 25, 795 (2004)

    Article  Google Scholar 

  • T. Siritienthong, J. Ratanavaraporn, P. Aramwit, Int. J. Pharm. 439, 175 (2012)

    Article  Google Scholar 

  • T. Siritienthong, J. Ratanavaraporn, T. Srichana, P. Aramwit, BioMed Research International, Article ID 904314 (2013)

  • T. Siritienthong, A. Angspatt, J. Ratanavaraporn, P. Aramwit, Pharm. Res. 31, 104 (2014)

    Article  Google Scholar 

  • Y. Tang, S.Y. Liu, S.P. Armes, N.C. Billingham, Biomacromolecules 4, 1636 (2003)

    Article  Google Scholar 

  • S. Terada, T. Nishimura, M. Sasaki, H. Yamada, M. Miki, Cytotechnology 40, 3 (2002)

    Article  Google Scholar 

  • C. Thomas, P. Sharma, Biomater. Artif. Cells Artif. Org 18, 1 (1990)

    Google Scholar 

  • K. Tsujimoto, H. Takagi, M. Takahashi, H. Yamada, S. Nakamori, J. Biochem. 129, 979 (2001)

    Article  Google Scholar 

  • R. Voegeli, J. Meier, R. Blust, Cosmetics Toiletries 108, 101 (1993)

    Google Scholar 

  • Y.Q. Zhang, Biotechnol. Adv. 20, 91 (2002)

    Article  Google Scholar 

  • Y.Q. Zhang, M.L. Tao, W.D. Shen, Y.Z. Zhou, Y. Ding, Y. Ma, W.L. Zhou, Biomaterials 25, 3751 (2004)

    Article  Google Scholar 

  • S. Zhaorigetu, N. Yanaka, M. Sasaki, H. Watanabe, N. Kato, J. Photochem. Photobiol. B 71, 11 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledged the financial support from Thailand Research Fund (Contract number RSA5680004) and Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornanong Aramwit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

The decovoluted FT-IR spectra of the amide I region of CH/SS microspheres prepared at different mixing compositions (80/20, 70/30, 60/40, and 50/50). (GIF 100 kb)

High resolution image (TIFF 16382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aramwit, P., Ekasit, S. & Yamdech, R. The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin. Biomed Microdevices 17, 84 (2015). https://doi.org/10.1007/s10544-015-9991-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9991-4

Keywords

Navigation