Skip to main content


Log in

Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript


Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  • S. Ahrar, M. Hwang, P.N. Duncan, E.E. Hui, Analyst 139(1), 187–190 (2014)

    Article  Google Scholar 

  • I.E. Araci, P. Brisk, Curr. Opin. Biotechnol. 25, 60–68 (2014)

    Article  Google Scholar 

  • K.C. Bhargava, B. Thompson, N. Malmstadt, Proc. Natl. Acad. Sci. U. S. A. 111(42), 15013–15018 (2014)

    Article  Google Scholar 

  • A.O. El Moctar, N. Aubry, J. Batton, Lab Chip 3(4), 273–280 (2003)

    Article  Google Scholar 

  • R. Fobel, C. Fobel, A.R. Wheeler. Appl. Phys. Lett. 102(19) (2013)

  • E.P. Kartalov, J.F. Zhong, A. Scherer, S.R. Quake, C.R. Taylor, W.F. Anderson, Biotechniques 40(1), 85–90 (2006)

    Article  Google Scholar 

  • S. Kirkpatrick, J. Stat. Phys. 34(5–6), 975–986 (1984)

    Article  MathSciNet  Google Scholar 

  • J.E. Kreutz, A. Shukhaev, W. Du, S. Druskin, O. Daugulis, R.F. Ismagilov, J. Am. Chem. Soc. 132(9), 3128–3132 (2010)

    Article  Google Scholar 

  • C.Y. Lee, C.L. Chang, Y.N. Wang, L.M. Fu, Int. J. Mol. Sci. 12(5), 3263–3287 (2011)

    Article  Google Scholar 

  • J. Melin, S.R. Quake, Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)

    Article  Google Scholar 

  • P. Neuzil, C.D. Campos, C.C. Wong, J.B. Soon, J. Reboud, A. Manz, Lab Chip 14(13), 2168–2176 (2014)

    Article  Google Scholar 

  • G. Pascali, L. Matesic, T.L. Collier, N. Wyatt, B.H. Fraser, T.Q. Pham et al., Nat. Protoc. 9(9), 2017–2029 (2014)

    Article  Google Scholar 

  • J.M. Pearce, Science 337(6100), 1303–1304 (2012)

    Article  Google Scholar 

  • S. Prill, M.S. Jaeger, C. Duschl, Biomicrofluidics 8(3) (2014)

  • V. Sanchez-Freire, A.D. Ebert, T. Kalisky, S.R. Quake, J.C. Wu, Nat. Protoc. 7(5), 829–838 (2012)

    Article  Google Scholar 

  • R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 75(1), 016601 (2012)

    Article  Google Scholar 

  • C. Tovey, SIAM. J. on Algebraic and Discrete Methods 6(3), 384–393 (1985)

  • H.Y. Tseng, C.H. Wang, W.Y. Lin, G.B. Lee, Biomed. Microdevices 9(4), 545–554 (2007)

    Article  Google Scholar 

  • P.M. Valencia, E.M. Pridgen, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik, ACS Nano 7(12), 10671–10680 (2013)

    Article  Google Scholar 

  • B.L. Wang, A. Ghaderi, H. Zhou, J. Agresti, D.A. Weitz, G.R. Fink et al., Nat. Biotechnol. 32(5), 473–478 (2014)

    Article  Google Scholar 

  • W.B. Zimmerman, Chem. Eng. Sci. 66(7), 1412–1425 (2011)

    Article  Google Scholar 

Download references


This work was funded by ERC Starting Grant TMIHCV (N° 242699), the British Council BIRAX Regenerative Medicine award (N° 33BX12HGYN), and the HeMibio consortium funded by the European Commission and Cosmetics Europe as part of the SEURAT-1 cluster (N° HEALTH-F5-2010-266777).

Compliance with Ethical Standards

Authors declare no conflict of interest (financial or non-financial). Research did not involve human participants or animals.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yaakov Nahmias.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 2213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezra, E., Maor, I., Bavli, D. et al. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms. Biomed Microdevices 17, 82 (2015).

Download citation

  • Published:

  • DOI: