Separation and assisted patterning of hippocampal neurons from glial cells using positive dielectrophoresis

Article

Abstract

In this work, we describe the separation of embryonic mouse hippocampal neurons from glial cells using a positive dielectrophoresis (DEP) process. Here, we have implemented a cell trapping-favorable, cell suspension solution with low conductivity. It enables positive dielectrophoresis for hippocampal neurons (thereby attracting them to the electrodes), while resulting in negative dielectrophoresis for glial cells (repelling them from the electrodes). We have systematically performed a mathematical simulation and analysis to anticipate the DEP frequency at which hippocampal neurons and glial cells are separated. Simulated DEP crossover frequencies have been experimentally verified, and new, refined glial dielectric and physical properties are suggested that better reflect the experimental results obtained. DEP movements of neurons and glial cells in targeted separation media were experimentally analyzed, under the specified electric signal. Additionally, we have confirmed our modeling results by selectively trapping neurons over electrodes on a custom-made, multi-electrode array (MEA), resulting in active recruitment of neurons over the stimulation and recording sites. This technique is a valuable addition to the toolbox for creating more functional and versatile multi-electrode arrays.

Keywords

Dielectrophoresis (DEP) Separation Patterning Hippocampal neurons Glial cells 

Supplementary material

10544_2015_9965_MOESM1_ESM.pdf (538 kb)
ESM 1(PDF 537 kb)
10544_2015_9965_MOESM2_ESM.mpg (4.9 mb)
ESM 2(MPG 5008 kb)

References

  1. L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep, S. Martinoia, Lab Chip 9(18), 2644–2651 (2009)CrossRefGoogle Scholar
  2. W.A. Bonner, H.R. Huleft, R.G. Sweet, L.A. Herzenberg, Rev. Sci. Instrum. 43(3), 404–409 (1972)CrossRefGoogle Scholar
  3. G.J. Brewer, J.R. Torricelli, E.K. Evege, P.J. Price, J. Neurosci, Res. 35(5), 567–576 (1993)Google Scholar
  4. R.A. Chitwood, A. Hubbard, D.B. Jaffe, J. Physiol. 515(3), 743–756 (1999)CrossRefGoogle Scholar
  5. L.A. Flanagan, J. Lu, L. Wang, S.A. Marchenko, N.L. Jeon, A.P. Lee, E.S. Monuki, Stem Cells 26(3), 656–665 (2008)CrossRefGoogle Scholar
  6. Z. Gagnon, S. Senapati, J. Gordon, H.C. Chang, Electrophoresis 29, 4808–4812 (2008)CrossRefGoogle Scholar
  7. B. Gao, L. Ziskind-Conhaim, J. Neurophysiol. 80, 3047–3061 (1998)Google Scholar
  8. L.J. Gentet, G.J. Stuart, J.D. Clements, Biophys. J. 79(1), 314–320 (2000)CrossRefGoogle Scholar
  9. K. Goslin, H. Asmussen, G. Banker, Culturing Nerve Cells, in Cellular and Molecular Neuroscience, ed. by G. Banker, K. Goslin, 2nd edn. (The MIT Press, Cambridge, 1998), pp. 339–370Google Scholar
  10. M.S. Grady, J.S. Charleston, D. Maris, B.M. Witgen, J. Lifshitz, J. Neurotrauma 20(10), 929–941 (2003)CrossRefGoogle Scholar
  11. V. Gupta, I. Jafferji, M. Garza, V.O. Melnikova, D.K. Hasegawa, R. Pethig, D.W. Davis, Biomicrofluidics 6, 024133 (2012)CrossRefGoogle Scholar
  12. T. Heida, W.L.C. Rutten, E. Marani, IEEE Trans. Biomed. Eng. 48(8), 921–930 (2001)CrossRefGoogle Scholar
  13. C.T. Ho et al., Lab Chip 13, 3578–3587 (2013)CrossRefGoogle Scholar
  14. F.T. Jaber, F.H. Labeed, M.P. Hughes, J. Neurosci, Methods 182(2), 225–235 (2009)Google Scholar
  15. F. Jabr. Know your neurons: What Is the Ratio of Gila to Neurons in the Brain. (Scientific American Blogs, 2012), http://blogs.scientificamerican.com/brainwaves/2012/06/13/know-your-neurons-what-is-the-ratio-of-glia-to-neurons-in-the-brain/. Assessed 29 Oct 2014
  16. C.P. Jeng, C.T. Huang, H.Y. Shih, Microsyst. Technol. 16(7), 1097–1104 (2010)CrossRefGoogle Scholar
  17. Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, H.P.C. Robinson, IEEE Trans. Biomed. Eng. 50(2), 241–248 (2003)CrossRefGoogle Scholar
  18. T.B. Jones, Electromechanics of Particles (Cambridge University Press, New York, 1995), pp. 34–81CrossRefGoogle Scholar
  19. A.F. Jonstone, G.W. Gross, D.G. Weiss, O.H. Schroeder, A. Gramowski, T.J. Shafer, Neurotoxicology 31(4), 331–350 (2010)CrossRefGoogle Scholar
  20. L. Korbo, Alcohol. Clin. Exp. Res. 23(1), 164–168 (1999)CrossRefGoogle Scholar
  21. F.H. Labeed, J. Lu, H.J. Mulhall, S.A. Marchenko, K.F. Hoettges, L.C. Estrada, A.P. Lee, M.P. Hughes, L.A. Flanagan, PLoS One 6(9), e25458 (2011)CrossRefGoogle Scholar
  22. L.M. Levy, O. Warr, D. Attwell, J. Neurosci. 18(23), 9620–9628 (1998)Google Scholar
  23. M. Li, W.H. Li, J. Zhang, G. Alici, W. Wen, J. Phys. D Appl. Phys. 47, 063001 (2014)CrossRefGoogle Scholar
  24. T.L. Mahaworasilpa, H.G. Coster, E.P. George, Biochim. Biophys. Acta 1193(1), 118–126 (1994)CrossRefGoogle Scholar
  25. M.P. Maher, H. Dvorak-Carbone, J. Pine, J.A. Wright, Y.C. Tai, Med. Biol. Eng. Comput. 37(1), 110–118 (1999)CrossRefGoogle Scholar
  26. G. Major, A.U. Larkman, P. Jonas, B. Sakmann, J.J. Jack, J. Neurosci. 14(8), 4613–4638 (1994)Google Scholar
  27. C.G. Malmberg, A.A. Maryott, J. Res. Natl. Bur. Stand. 45(4), 299–303 (1950)CrossRefGoogle Scholar
  28. M. Merz, P. Fromherz, Adv. Funct. Mater. 15(5), 739–744 (2005)CrossRefGoogle Scholar
  29. S. Miltenyi, W. Muller, W. Weichel, A. Radbruch, Cytometry 11(2), 231–238 (1990)CrossRefGoogle Scholar
  30. Y. Nagata, K. Mokishiba, Y. Tsukada, J. Neurochem. 22, 493–503 (1974)CrossRefGoogle Scholar
  31. J.L. Nourse, J.L. Prieto, A.R. Dickson, J. Lu, M.M. Pathak, F. Tombola, M. Demetriou, A.P. Lee, L.A. Flanagan, Stem Cells 32(3), 706–716 (2013)CrossRefGoogle Scholar
  32. A. Novellino et al. Front Neuroeng. 4 (2011) doi: 10.3389/fneng.2011.00004. 10.3389%2Ffneng.2011.00004#pmc_ext
  33. Y.C. Okada, J. Huang, M.E. Rice, D. Tranchina, C. Nicholson, J. Neurophysiol. 72(2), 742–753 (1994)Google Scholar
  34. M. Peters, J. Stinstra, I. Leveles, Modeling and Imaging of Bioelectrical Activity Principles and Applications, in Bioelectric Engineering, ed. by B. He (New York, Springer, 2005), pp. 281–319Google Scholar
  35. H.A. Pohl, Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields (Cambridge University Press, New York, 1978)Google Scholar
  36. S. Prasad, X. Zhang, M. Yang, Y. Ni, V. Parpura, C.S. Ozkan, M. Ozkan, J. Neurosci, Methods 135(1–2), 79–88 (2004)Google Scholar
  37. J.L. Prieto, J. Lu, J.L. Nourse, L.A. Flanagan, A.P. Lee, Lab Chip 12(12), 2182–2189 (2012)CrossRefGoogle Scholar
  38. M.E. Spira, A. Hai, Nat. Nanotech. 8, 83–94 (2013)CrossRefGoogle Scholar
  39. I.H. Stevenson, K.P. Kording, Nat. Neurosci. 14, 139–142 (2011)CrossRefGoogle Scholar
  40. A. Suzuki, Y.W. Zheng, R. Kondo, M. Kusakabe, Y. Takada, K. Fukao, K. Nakauchi, H. Taniguchi, Hepatology 32(6), 1230–1239 (2000)CrossRefGoogle Scholar
  41. M.D. Vahey, J. Voldman, Anal. Chem. 80, 3135–3143 (2008)CrossRefGoogle Scholar
  42. J. Viventi et al., Nat. Neurosci. 14, 1599–1605 (2011)CrossRefGoogle Scholar
  43. D.A. Wagenaar, J. Pine, S.M. Potter, J. Neurosci, Methods 138(1–2), 27–37 (2004)Google Scholar
  44. Z. Yu, G. Xiang, L. Pan, L. Huang, Z. Yu, W. Xing, J. Cheng, Biomed. Microdevices 6(4), 311–324 (2004)CrossRefGoogle Scholar
  45. S.H. Yuan et al., PLoS One 6(3), e17540 (2011)CrossRefGoogle Scholar
  46. X. Zhao, A. Ahram, R.F. Berman, J.P. Muizelaar, B.G. Lyeth, Glia 44(2), 140–152 (2003)CrossRefGoogle Scholar
  47. T. Zhou, S. Tatic-Lucic, Proc. IEEE Conf. Sensors. Taipei Taiwan (2012). doi:10.1109/ICSENS.2012.6411487 Google Scholar
  48. M. Zobrowski, J.J. Chalmers, Methods Mol. Biol. 295, 291–300 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tianyi Zhou
    • 1
    • 4
  • Susan F. Perry
    • 2
    • 3
  • Yixuan Ming
    • 1
  • Susanne Petryna
    • 2
  • Vicki Fluck
    • 2
  • Svetlana Tatic-Lucic
    • 1
    • 2
    • 4
  1. 1.Department of Electrical and Computer EngineeringLehigh UniversityBethlehemUSA
  2. 2.Bioengineering ProgramLehigh UniversityBethlehemUSA
  3. 3.Department of Chemical EngineeringLehigh UniversityBethlehemUSA
  4. 4.Lehigh UniversityBethlehemUSA

Personalised recommendations