Skip to main content
Log in

A reusable device for electrochemical applications of hydrogel supported black lipid membranes

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Black lipid membranes (BLMs) are significant in studies of membrane transport, incorporated proteins/ion transporters, and hence in construction of biosensor devices. Although BLMs provide an accepted mimic of cellular membranes, they are inherently fragile. Techniques are developed to stabilize them, such as hydrogel supports. In this paper, we present a reusable device for studies on hydrogel supported (hs) BLMs. These are formed across an ethylene tetrafluoroethylene (ETFE) aperture array supported by the hydrogel, which is during in situ polymerization covalently “sandwiched” between the ETFE substrate and a gold electrode microchip, thus allowing direct electrochemical studies with the integrated working electrodes. Using electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy and contact angle measurements, we demonstrate the optimized chemical modifications of the gold electrode microchips and plasma modification of the ETFE aperture arrays facilitating covalent “sandwiching” of the hydrogel. Both fluorescence microscopy and EIS were used to demonstrate the induced spontaneous thinning of a deposited lipid solution, leading to formation of stabilized hsBLMs on average in 10 min. The determined specific membrane capacitance and resistance were shown to vary in the range 0.31–0.49 μF/cm2 and 45–65 kΩ cm2, respectively, corresponding to partially solvent containing BLMs with an average life time of 60–80 min. The characterized hsBLM formation and devised equivalent circuit models lead to a schematic model to illustrate lipid molecule distribution in hydrogel-supported apertures. The functionality of stabilized hsBLMs and detection sensitivity of the platform were verified by monitoring the effect of the ion transporter valinomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • M. Andersson, H.M. Keizer, C. Zhu, D. Fine, A. Dodabalapur, R.S. Duran, Langmuir 23, 2924 (2007)

    Article  Google Scholar 

  • R. Benz, O. Frölich, P. Läuger, M. Montal, Biochim. Biophys. Acta 394, 323 (1975)

    Article  Google Scholar 

  • G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. 176, 275 (1984)

    Article  Google Scholar 

  • N. Bunjes, E.K. Schmidt, A. Jonczyk, F. Rippmann, D. Beyer, H. Ringsdorf, P. Gra, W. Knoll, R. Naumann, Langmuir 13, 6188 (1997)

    Article  Google Scholar 

  • E.T. Castellana, P.S. Cremer, Surf. Sci. Rep. 61, 429 (2006)

    Article  Google Scholar 

  • R.F. Costello, I. Peterson, J. Heptinstall, D.J. Walton, Biosens. Bioelectron. 14, 265 (1999)

    Article  Google Scholar 

  • M. Dawgul, D.G. Pijanowska, A. Krzyskow, J. Kruk, W. Torbicz, Sensors 3, 146 (2003)

    Article  Google Scholar 

  • M. Dimaki, M. Vergani, A. Heiskanen, D. Kwasny, L. Sasso, M. Carminati, J. Gerrard, J. Emneus, W.E. Svendsen, Sensors 14, 9505 (2014)

    Article  Google Scholar 

  • S. Goennenwein, M. Tanaka, B. Hu, L. Moroder, E. Sackmann, Biophys. J. 85, 646 (2003)

    Article  Google Scholar 

  • J.-G. Guan, Y.-Q. Miao, Q.-J. Zhang, J. Biosci. Bioeng. 97, 219 (2004)

    Article  Google Scholar 

  • R. Guidelli, G. Aloisi, L. Becucci, A. Dolfi, M. Rosa Moncelli, F. Tadini Buoninsegni, J. Electroanal. Chem. 504, 1 (2001)

    Article  Google Scholar 

  • J. S. Hansen, M. Perry, J. Vogel, T. Vissing, C. R. Hansen, O. Geschke, J. Emnéus, and C. H. Nielsen, J. Micromech. Microeng. 19, 025014 (11pp) (2009)

  • A.R. Heiskanen, C.F. Spégel, N. Kostesha, T. Ruzgas, J. Emnéus, Langmuir 24, 9066 (2008)

    Article  Google Scholar 

  • M. Hetzer, S. Heinz, S. Grage, and T. M. Bayerl, 7463, 982 (1998)

  • B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Electrochim. Acta 55, 6218 (2010)

    Article  Google Scholar 

  • N. Inagaki, K. Narushima, S.K. Lim, Y.W. Park, Y. Ikeda, J. Polym. Sci. B Polym. Phys. 40, 2871 (2002)

    Article  Google Scholar 

  • B. Kelety, K. Diekert, J. Tobien, N. Watzke, W. Dörner, P. Obrdlik, K. Fendler, Assay. Drug. Dev. Technol. 4, 575 (2006)

    Article  Google Scholar 

  • A. Kibrom, R.F. Roskamp, U. Jonas, B. Menges, W. Knoll, H. Paulsen, R.L.C. Naumann, Soft Matter 7, 237 (2011)

    Article  Google Scholar 

  • Y.-R. Kim, S. Jung, H. Ryu, Y.-E. Yoo, S.M. Kim, T.-J. Jeon, Sensors 12, 9530 (2012)

    Article  Google Scholar 

  • W. Knoll, I. Köper, R. Naumann, E.-K. Sinner, Electrochim. Acta 53, 6680 (2008)

    Article  Google Scholar 

  • M. Kühner, R. Tampé, E. Sackmann, Biophys. J. 67, 217 (1994)

    Article  Google Scholar 

  • J. Leitch, J. Kunze, J.D. Goddard, A.L. Schwan, R.J. Faragher, R. Naumann, W. Knoll, J.R. Dutcher, J. Lipkowski, Langmuir 25, 10354 (2009)

    Article  Google Scholar 

  • J. Lipkowski, Phys. Chem. Chem. Phys. 12, 13874 (2010)

    Article  Google Scholar 

  • T.M. Long, S. Prakash, M.A. Shannon, J.S. Moore, Langmuir 22, 4104 (2006)

    Article  Google Scholar 

  • J.T. Marquês, R.F.M. de Almeida, A.S. Viana, Soft Matter 8, 2007 (2012)

    Article  Google Scholar 

  • I.P. Mccabe, M.B. Forstner, Open. J. Biophys. 3, 59 (2013)

    Article  Google Scholar 

  • A. Michalke, T. Schürholz, H.-J. Galla, C. Steinem, Langmuir 17, 2251 (2001)

    Article  Google Scholar 

  • W.C. Mueller, P. Rudin, D.O. Tien, H.T. Wescott, Nature 194, 979 (1962)

    Article  Google Scholar 

  • R. Naumann, D. Walz, S. M. Schiller, and W. Knoll, J. Electroanal. Chem. 550-551, 241 (2003)

  • C.H. Nielsen, Anal. Bioanal. Chem. 395, 697 (2009)

    Article  Google Scholar 

  • A.L. Plant, Langmuir 9, 2764 (1993)

    Article  Google Scholar 

  • R.S. Ries, H. Choi, R. Blunck, F. Bezanilla, J.R. Heath, J. Phys. Chem. B 108, 16040 (2004)

    Article  Google Scholar 

  • R. Robelek, E.S. Lemker, B. Wiltschi, V. Kirste, R. Naumann, D. Oesterhelt, E.-K. Sinner, Angew. Chem. Int. Ed. 46, 605 (2007)

    Article  Google Scholar 

  • M. Roerdink Lander, S. Ibragimova, C. Rein, J. Vogel, K. Stibius, O. Geschke, M. Perry, C. Hélix-Nielsen, Langmuir 27, 7002 (2011)

    Article  Google Scholar 

  • E. Sackmann, Science. 271(80), 43 (1996)

  • A. Samide, A. Ciuciu, C. Negrila, Port. Electrochim. Acta 28, 385 (2010)

    Article  Google Scholar 

  • M.L. Steen, C.I. Butoi, E.R. Fisher, Langmuir 17, 8156 (2001)

    Article  Google Scholar 

  • C. Steinem, A. Janshoff, H.-J. Galla, M. Sieber, Bioelectrochem. Bioenerg. 42, 213 (1997)

    Article  Google Scholar 

  • M.M. Sung, G.J. Kluth, R. Maboudian, J. Vac. Sci. Technol. A 17, 540 (1999)

    Article  Google Scholar 

  • L.K. Tamm, H.M. McConnell, Biophys. J. 47, 105 (1985)

    Article  Google Scholar 

  • M. Tanaka, E. Sackmann, Nature 437, 656 (2005)

    Article  Google Scholar 

  • B.D. Tompkins, J.M. Dennison, E.R. Fisher, J. Membr. Sci. 428, 576 (2013)

    Article  Google Scholar 

  • A. Ulman, Chem. Rev. 96, 1533 (1996)

    Article  Google Scholar 

  • J. Vidič, A. Podgornik, A. Štrancar, J. Chromatogr. A 1065, 51 (2005)

    Article  Google Scholar 

  • A. Wardak, H.T. Tien, Bioelectrochem. Bioenerg. 24, 1 (1990)

    Article  Google Scholar 

  • C.-S. Wu, M.K.K. Oo, J.M. Cupps, X. Fan, Biosens. Bioelectron. 26, 3870 (2011)

    Article  Google Scholar 

  • M. Zagnoni, Lab Chip 12, 1026 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Copenhagen Research School of Nanotechnology (CONT) from Denmark, Department of Micro- and Nanotechnology at Technical University of Denmark and a cleantech company Aquaporin A/S in Copenhagen, Denmark. Additionally, A. H. acknowledges Lundbeck Foundation grant no. R69-A6408 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arto Heiskanen.

Additional information

Agnieszka Mech-Dorosz and Arto Heiskanen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mech-Dorosz, A., Heiskanen, A., Bäckström, S. et al. A reusable device for electrochemical applications of hydrogel supported black lipid membranes. Biomed Microdevices 17, 21 (2015). https://doi.org/10.1007/s10544-015-9936-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9936-y

Keywords

Navigation