Skip to main content
Log in

Micro-optical force distribution sensing suitable for lump/artery detection

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Surgeons performing robotic-assisted surgical tasks need to establish the density and constituency of hidden tissue structures using only surgical tools. This is possible by integrating a miniaturized sensor into the end-effectors of robotic surgical systems. In this present work, optical microsystems technology is utilized to develop a miniature force-distribution sensor that can be integrated into surgical end-effectors. The sensing principle of the sensor is based on the mechanism of splice coupling. Since the device is fully optical, the sensor is magnetic-resonance compatible and is also electrically passive. The experimental results performed on the developed sensor confirm its ability to measure the distributed force information. Such information is used to detect different tissue structures such as lumps, arteries, or ureters during robotic-assisted surgical tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • R. Ahmadi, J. Dargahi, M. Packirisamy, R. Cecere, A new MRI-compatible optical fiber tactile sensor for use in minimally invasive robotic surgery systems. In Proc. Fourth Eur. Work. Opt. Fiber Sensors 7653, 2Z-1–2Z-4 (2010)

    Google Scholar 

  • R. Ahmadi, M. Packirisamy, J. Dargahi, Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations. J. Biomed. Opt. 17(8), 081416 (2012a). 1–8

    Article  Google Scholar 

  • R. Ahmadi, M. Packirisamy, J. Dargahi, R. Cecere, Discretely-loaded beam-type optical fiber tactile sensor for tissue manipulation and palpation in minimally invasive robotic surgery. IEEE Sensors J. 12(1), 22–32 (2012b)

    Article  Google Scholar 

  • R. Ahmadi, M. Packirisamy, J. Dargahi, High sensitive force sensing based on the optical fiber coupling loss. J. Med. Devices 7(1), 1–8 (2013)

    Article  Google Scholar 

  • F.P. Beer, E.R. Johnston, Mechanics of materials (McGraw-Hill, New York, 1981), pp. 396–429

    Google Scholar 

  • K. Chinzei, R. Kikinis, and F. A. Jolesz, MR compatibility of mechatronic devices: Design criteria, in Proc. 2nd Int. Conf. Med. Image Computing and Computer-Assisted Intervention, (1999) pp. 1020–1030

  • K. Chinzei, and K. Miller, MRI guided surgical robot, in Proc. 2001 Australian Conference on Robotics and Automation, Sydney, (2001) pp. 50–55

  • I. Gannot, Optical fibers and sensors for medical applications, SPIE-International Society for Optical Engine, (2001)

  • P. Gomes, Surgical robotics: reviewing the past, analysing the present, imagining the future. Robot. Comput. Integr. Manuf. 27(2), 261–266 (2011)

    Article  Google Scholar 

  • A. C. Heijmans, L. K. Cheng, and F. P. Wieringa, Optical fiber sensors for medical applications-practical engineering considerations, in Proc. 4th European Conference of the International Federation for Medical and Biological Engineering (IFMBE), vol. 22, (2008) pp. 2330–2334

  • T. A. Kern, Engineering Haptic Devices, Springer, 1st Edition, (2009) pp. 321–347

  • C.-H. King, M.O. Culjat, M.L. Franco, C.E. Lewis, E.P. Dutson, W.S. Grundfest, J.W. Bisley, Tactile feedback induces reduced grasping force in robot-assisted surgery. IEEE Trans. Haptic 2(2), 103–110 (2009a)

    Article  Google Scholar 

  • C.-H. King, M.O. Culjat, M.L. Franco, J.W. Bisley, G.P. Carman, E.P. Dutson, W.S. Grundfest, A multi-element tactile feedback system for robot-assisted minimally invasive surgery. IEEE Trans. Haptic 2(1), 52–56 (2009b)

    Article  Google Scholar 

  • J. Li, Q. Zhang, A. Liu, Advanced fiber optical switches using deep RIE (DRIE) fabrication. Sensors Actuators A Phys. 102(3), 286–295 (2003)

    Article  Google Scholar 

  • S. Nemoto, T. Makimoto, Analysis of splice loss in single-mode fibres using a Gaussian field approximation. Opt. Quant. Electron. 11(5), 447–457 (1979)

    Article  Google Scholar 

  • P. Polygerinos, D. Zbyszewski, T. Schaeffter, R. Razavi, L.D. Seneviratne, K. Althoefer, MRI-compatible fiber-optic force sensors for catheterization procedures. IEEE Sensors J. 10(10), 1598–1608 (2010a)

    Article  Google Scholar 

  • P. Polygerinos, P. Puangmali, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer, Novel miniature MRI-compatible fiber-optic force sensor for cardiac catheterization procedures, in Proc. 2010 I.E. International Conference on Robotics and Automation, Alaska, USA, May, (2010) pp. 2598–2603

  • P. Puangmali, K. Althoefer, L.D. Seneviratne, D. Murphy, P. Dasgupta, State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sensors J. 8(4), 371–381 (2008)

    Article  Google Scholar 

  • P. Puangmali, K. Althoefer, L.D. Seneviratne, Mathematical modeling of intensity-modulated bent-tip optical fiber displacement sensors. IEEE Trans. Instrum. Meas. 59(2), 283–291 (2010)

    Article  Google Scholar 

  • E.P. Scilingo, M. Bianchi, G. Grioli, A. Bicchi, Rendering softness: integration of kinesthetic and cutaneous information in a haptic device. IEEE Trans. Haptic 3(2), 109–118 (2010)

    Article  Google Scholar 

  • S. Sokhanvar, M. Ramezanifard, J. Dargahi, M. Packirisamy, Graphical rendering of localized lumps for MIS applications. J. Med. Devices 1(3), 217–226 (2007)

    Article  Google Scholar 

  • S. Sokhanvar, M. Packirisamy, J. Dargahi, MEMS endoscopic tactile sensor: toward in-situ and in-vivo tissue softness characterization. IEEE Sensors J. 9(12), 1679–1687 (2009)

    Article  Google Scholar 

  • H. Su, M. Zervas, C. Furlong, G.S. Fischer, A miniature MRI-compatible fiber-optic force sensor utilizing fabry-perot interferometer. MEMS. Nanotechnol. 4, 131–136 (2011a)

    Google Scholar 

  • H. Su, M. Zervas, G. Cole, C. Furlong and G. Fischer, Real-time MRI-guided needle placement robot with integrated fiber optic force sensing, in Proc. IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, (2011b) pp. 1583–1588

  • K. Taniguchi, E. Kobayashi, S. Joung, M. Ono, N. Motomura, S. Kyo, S. Takamoto, I. Sakuma, A force measurement device using optical fiber for surgical tools-basic concept and implementation. J. Robot. Mechatron. 23(1), 94–104 (2011)

    Google Scholar 

  • M.C. Yip, S.G. Yuen, R.D. Howe, A robust uniaxial force sensor for minimally invasive surgery. IEEE Trans. Biomed. Eng. 57(5), 1008–1011 (2010)

    Article  Google Scholar 

  • H. Yousef, M. Boukallel, K. Althoefer, Tactile sensing for dexterous in-hand manipulation in robotics-a review. Sensors Actuators A Phys. 167(2), 171–187 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Arbatani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, R., Arbatani, S., Packirisamy, M. et al. Micro-optical force distribution sensing suitable for lump/artery detection. Biomed Microdevices 17, 10 (2015). https://doi.org/10.1007/s10544-015-9931-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9931-3

Keywords

Navigation