Skip to main content

3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients


Three-dimensional (3D) printing is advantageous over conventional technologies for the fabrication of sophisticated structures such as 3D micro-channels for future applications in tissue engineering and drug screening. We aimed to apply this technology to cell-based assays using polydimethylsiloxane (PDMS), the most commonly used material for fabrication of micro-channels used for cell culture experiments. Useful properties of PDMS include biocompatibility, gas permeability and transparency. We developed a simple and robust protocol to generate PDMS-based devices using a soft lithography mold produced by 3D printing. 3D chemical gradients were then generated to stimulate cells confined to a micro-channel. We demonstrate that concentration gradients of growth factors, important regulators of cell/tissue functions in vivo, influence the survival and growth of human embryonic stem cells. Thus, this approach for generation of 3D concentration gradients could have strong implications for tissue engineering and drug screening.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  • E. Berthier, D.J. Beebe, Lab Chip 14, 3241 (2014)

  • P. Carmeliet, R.K. Jain, Nature 407, 6801 (2000)

    Article  Google Scholar 

  • J. Condeelis, R.H. Singer, J.E. Segall, Annu. Rev. Cell Dev. Biol. 21, 695 (2005)

  • E. Cukierman, K.E. Sung, X. Su, E. Berthier, C. Pehlke, A. Friedl, D.J. Beebe, PLoS One 10, e76373 (2013)

    Google Scholar 

  • J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 7101 (2006)

    Article  Google Scholar 

  • D.S. Eom, S. Amarnath, J.L. Fogel, S. Agarwala, Development 138, 15 (2011)

    Article  Google Scholar 

  • J.L. Erkal, A. Selimovic, B.C. Gross, S.Y. Lockwood, E.L. Walton, S. McNamara, R.S. Martin, D.M. Spence, Lab Chip 14, 12 (2014)

    Article  Google Scholar 

  • K.M. Fosen, S.R. Thom, Antioxid Redox Signaling 21, 1634 (2014)

  • U. Haessler, Y. Kalinin, M.A. Swartz, M. Wu, Biomed. Microdevices 11, 4 (2009)

    Article  Google Scholar 

  • D. Irimia, Ann. Rev. Biomed. Eng. 12, 259 (2010)

  • K. Kamei, J. Lab. Autom. 18, 6 (2013)

    Article  Google Scholar 

  • K. Kamei, S. Guo, Z.T. Yu, H. Takahashi, E. Gschweng, C. Suh, X. Wang, J. Tang, J. McLaughlin, O.N. Witte, K.B. Lee, H.R. Tseng, Lab Chip 9, 4 (2009)

    Article  Google Scholar 

  • T.M. Keenan, A. Folch, Lab Chip 8, 1 (2008)

    Article  Google Scholar 

  • T. Kihara, J. Ito, J. Miyake, PLoS One 8, e82382 (2013)

    Article  Google Scholar 

  • B.J. Kim, M. Wu, Ann. Biomed. Eng. 40, 6 (2012)

    Google Scholar 

  • D.B. Kolesky, R.L. Truby, A.S. Gladman, T.A. Busbee, K.A. Homan, J.A. Lewis, Adv. Mater. 26, 19 (2014)

    Google Scholar 

  • Kshitiz, D.H. Kim, D.J. Beebe, A. Levchenko, Trends Biotechnol 29, 8 (2011)

    Article  Google Scholar 

  • W.E. Lowry, L. Richter, R. Yachechko, A.D. Pyle, J. Tchieu, R. Sridharan, A.T. Clark, K. Plath, Proc. Natl. Acad. Sci. U. S. A. 105, 8 (2008)

    Article  Google Scholar 

  • T. Ludwig, V. Bergendahl, M. Levenstein, J. Yu, M.D. Probasco, J. Thomson, Nat. Meth. 3, 8 (2006a)

    Google Scholar 

  • T. Ludwig, M.E. Levenstein, J.M. Jones, W.T. Berggren, E.R. Mitchen, J.L. Frane, L.J. Crandall, C.A. Daigh, K.R. Conard, M.S. Piekarczyk, R.A. Llanas, J.A. Thomson, Nat. Biotechnol. 24, 2 (2006b)

    Article  Google Scholar 

  • A. Muller, B. Homey, H. Soto, N. Ge, D. Catron, M.E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S.N. Wagner, J.L. Barrera, A. Mohar, E. Verastegui, A. Zlotnik, Nature 410, 6824 (2001)

    Article  Google Scholar 

  • J.V. Nauman, P.G. Campbell, F. Lanni, J.L. Anderson, Biophys. J. 92, 4444 (2007)

    Article  Google Scholar 

  • A. Pluen, P.A. Netti, R.K. Jain, D.A. Berk, Biophys. J. 77, 542 (1999)

    Article  Google Scholar 

  • L. Przybyla, L. Voldman, Annu. Rev. Anal. Chem. 5, 293 (2012)

  • E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181 (2014)

  • M.D. Symes, P.J. Kitson, J. Yan, C.J. Richmond, G.J. Cooper, R.W. Bowman, T. Vilbrandt, L. Cronin, Nat. Chem. 4, 5 (2012)

    Article  Google Scholar 

  • K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Cell 131, 5 (2007)

    Article  Google Scholar 

  • J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Science 282, 5391 (1998)

    Article  Google Scholar 

  • H. Yoshioka, M. Mikami, Y. Mori, E. Tsuchida, J. Macromol. Sci. Pure A31, 113 (1994a)

  • H. Yoshioka, M. Mikami, Y. Mori, E. Tsuchida, J. Macromol. Sci. Pure A31, 121 (1994b)

  • J. Yu, M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, I.I. Slukvin, J.A. Thomson, Science 318, 5858 (2007)

    Article  Google Scholar 

Download references


Funding was generously provided by the Japan Society for the Promotion of Science (JSPS): Young Scientists (A) (to K.K.; 23681028) and Challenging Exploratory Research (to K.K.; 26560209); funding was also provided by Terumo Life Science Foundation. The WPI-iCeMS is supported by the World Premier International Research Centre Initiative (WPI), the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Competing financial interests

K. K. and Y. C. are listed as co-inventors on the Japanese provisional patent application based on this research. The remaining authors declare no competing financial interests.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Ken-ichiro Kamei or Yong Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MOV 676 kb)

(MOV 614 kb)

(MOV 1563 kb)

(MOV 1304 kb)


(DOCX 17564 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamei, Ki., Mashimo, Y., Koyama, Y. et al. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed Microdevices 17, 36 (2015).

Download citation

  • Published:

  • DOI:


  • 3D printing
  • Microfluidics
  • Polydimethylsiloxane
  • Human embryonic stem cell
  • Concentration gradient