Skip to main content

Advertisement

Log in

Handcrafted multilayer PDMS microchannel scaffolds for peripheral nerve regeneration

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Injuries that result in the loss of limb functionality may be caused by the severing of the peripheral nerves within the affected limb. Several bioengineered peripheral nerve scaffolds have been developed in order to provide the physical support and topographical guidance necessary for the naturally disorganized axon outgrowth to reattach to distal nerve stumps as an alternative to other procedures, like nerve grafting. PDMS has been chosen for the base material of the scaffolds due to its biocompatibility, flexibility, transparency, and well-developed fabrication techniques. The process of observing the axon outgrowth across the nerve gaps with PDMS scaffolds has been challenging due to the limited number and fineness of longitudinal sections that can be extracted from harvested nerve tissue samples after implantation. To address this, multilayer microchannel scaffolds were developed with the object of providing more refined longitudinal observation of axon outgrowth by longitudinally ‘sectioning’ the device during fabrication, removing the need for much of the sample preparation process. This device was then implanted into the sciatic nerves of Lewis rats, and then harvested after two and four weeks to analyze the difference in nerve regeneration between two different time periods. The present layer by layer structure, which is separable after nerve regeneration and is treated as an individual layer during the histology process, provides the details of biological events during axonal regeneration. Confocal microscopic imaging showed the details of peripheral nerve regeneration including nerve branches and growth cones observable from within the microchannels of the multilayer PDMS microchannel scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • T. Akin, K. Najafi, R.H. Smoke, R.M. Bradley, Biomedical engineering. IEEE transactions on 41, 305–313 (1994)

    Google Scholar 

  • J.M. Anderson, ASAIO Journal 34, 101–107 (1988)

    Article  Google Scholar 

  • M. Andriot, J.V. DeGroot, J. Meek, R. Meeks, E. Gerlach, M. Jungk, A.T. Wolf, S. Cray, T. Easton, A. Mountney, S. Leadley, S.H. Chao, A. Colas, F.d. Buyl, A. Dupont, J.L. Garaud, F. Gubbels, J.P. Lecomte, B. Lenoble, S. Stassen, C. Stevens, X. Thomas, and G. Shearer. 2007. In Inorganic Polymers. R.D. Jaeger and M. Gleria, editors. Nova Science Publishers 61–161

  • I. AxoGen (2014)

  • S.F. Badylak, T.W. Gilbert, Seminars in Immunology 20, 109–116 (2008)

    Article  Google Scholar 

  • M.J.O.E. Bertleff, M.F. Meek, J.-P.A. Nicolai, The Journal of Hand Surgery 30A, 513–518 (2005)

    Article  Google Scholar 

  • K.L. Billiar, A. Pandit, A.J. Windebank, L. Yao, Tissue Engineering. Part C, Methods 16, 11 (2010)

    Google Scholar 

  • T.B. Bini, S. Gao, X. Xu, S. Wang, S. Ramakrishna, K.W. Leong, Journal of biomedical materials research 68, 286–295 (2004)

    Article  Google Scholar 

  • T. Boretius, J. Badia, A. Pascual-Font, M. Schuettler, X. Navarro, K. Yoshida, T. Stieglitz, Biosensors & Bioelectronics 26, 7 (2010)

    Article  Google Scholar 

  • A. Bozkurt, F. Lassner, D. ODey, R. Deumens, A. Böcker, T. Schwendt, C. Janzen, C.V. Suschek, R. Tolba, E. Kobayashi, B. Sellhaus, S. Tholl, L. Eummelen, F. Schügner, L.O. Damink, J. Weis, G.A. Brook, and N. Pallua, Biomaterials (2011)

  • A.W. Bridges, N. Singh, K.L. Burn, J.E. Babensee, L.A. Lyon, A.J. Garcia, Biomaterials 29, 4605–4615 (2008)

    Article  Google Scholar 

  • J. Castro, P. Negredo, C. Avendano, Brain Research 1190, 65–77 (2008)

    Article  Google Scholar 

  • Y.K. Chan, C.O. Ng, P.C. Knox, M.J. Garvey, R.L. Williams, and D. Wong, Investigative Ophthamology & Visual Science 52, 9721–9727 (2011)

  • S.-H. Cho, H.M. Lu, L. Cauller, M.I. Romero-Ortega, J.-B. Lee, G.A. Hughes, IEEE Sensors Journal 8, 1830–1836 (2008)

    Article  Google Scholar 

  • Y. Choi, F. Shafqat, H. Heo, R.V. Bellamkonda, In 2012 international annual symposium on regenerative rehabilitation (Pittsburgh, PA, 2012)

    Google Scholar 

  • I.P. Clements, Y.-T. Kim, D. Andreasen, R.V. Bellamkonda, in In 3rd International IEEE/EMBS Conference on Neural Engineering, vol 3 (IEEE, Kohala Coast, 2007)

    Google Scholar 

  • I.P. Clements, Y.-t. Kim, A.W. English, X. Lu, A. Chung, R.V. Bellamkonda, Biomaterials 30, 3834–3846 (2009)

    Article  Google Scholar 

  • A. Colas, and P. Rafidison, PharmaChem 46–49 (2005). http://cmd-www.dowcorning.com/content/publishedlit/52-1089-01.pdf. Accessed 14 Oct 2015

  • N. Danielsen, L.B. Dahlin, P. Thomsen, Biomaterials 14, 1180–1185 (1993)

    Article  Google Scholar 

  • J.E. Davies, R. Matta, V.C. Mendes, P.S.P.d. Carvalho, Organogenesis 6, 161–166 (2010)

    Article  Google Scholar 

  • S.H. Fang Wang, Microchimica Acta 165, 22 (2009)

    Google Scholar 

  • T. Fujii, Microelectronic Engineering 61, 7 (2002)

    Google Scholar 

  • K. Garde, E. Keefer, B. Botterman, P. Galvan, M.I. Romero, Frontiers In Neuroengineering 2, 5 (2009)

    Article  Google Scholar 

  • R.K. Gore, Y. Choi, A.W. English, R.V. Bellamkonda, In neuroscience 2012, society for neuroscience 42nd annual meeting (New Orleans, LA, 2012)

    Google Scholar 

  • W.M. Grill, M.D. Craggs, R.D. Foreman, C.L. Ludlow, J.L. Buller, Journal of Rehabilitation Research and Development 38, 641–653 (2001)

    Google Scholar 

  • C. He, Z. Chen, Z. Chen, Microsurgery 13, 151–154 (1992)

    Article  Google Scholar 

  • O. Hevia, Dermatologic Surgery 35, 1646–1652 (2009)

    Article  Google Scholar 

  • S. Hsu, C. Su, I. Chiu, Artificial Organs 33, 69 (2009)

    Article  Google Scholar 

  • R.M. Kappel, A.J.H. Klunder, G.J.M. Pruijn, European Journal of Plastic Surgery 37, 123–128 (2013)

    Article  Google Scholar 

  • P. Kathryn Ziegler-Graham, P. Ellen, J. MacKenzie, M. Patti, L. Ephraim, P. Thomas, G. Travison, P. Ron Brookmeyer, Archives of Physical Medicine and Rehabilitation 89, 7 (2008)

    Google Scholar 

  • S. Kehoe, X.F. Zhang, D. Boyd, Injury 43, 553–572 (2012)

    Article  Google Scholar 

  • Y.T. Kim, Haftel V.K., Kumar S., and R.V. Bellamkonda, Biomaterials 29, 3117–3127 (2008)

  • E. Kon, G. Filardo, S. Zaffagnini, A.D. Martino, B.D. Matteo, G.M.M. Muccioli, M. Busacca, M. Marcacci, Knee surgery, sports traumatology. Arthroscopy 22, 128–134 (2012)

    Google Scholar 

  • G.A.M. Kurstjens, A. Borau, A. Rodriguez, N.J.M. Rijkhoff, T. Sinkjaer, The Journal of Urology 174, 1482–1487 (2005)

    Article  Google Scholar 

  • S.P. Lacour, J.J. Fitzgerald, N. Lago, E. Tarte, S. McMahon, J. Fawcett, Neural systems and rehabilitation engineering. IEEE Transactions on 17, 6 (2009)

    Google Scholar 

  • N. Lago, F.J. Rodriguez, M.S. Guzman, J. Jaramillo, X. Navarro, Journal of Neuroscience Research 85, 2800–2812 (2007)

    Article  Google Scholar 

  • A.C. Lee, V.M. Yu, J.B. Lowe, M.J. Brenner, D.A. Hunter, S.E. Mackinnon, S.E. Sakiyama-Elbert, Experimental Neurology 184, 295–303 (2003)

    Article  Google Scholar 

  • A. Levi, V. Guenard, P. Aebischer, R. Bunge, The Journal of Neuroscience 14, 1309–1319 (1994)

    Google Scholar 

  • S. Liu, H. Li, J.O. Yang, H. Peng, K. Wu, Y. Liu, J. Yang, Microsurgery 25, 329–337 (2005)

    Article  Google Scholar 

  • P. Lotfi, M.I. Romero-Ortega, in In 33rd Annual International Conference of the IEEE Engineering In Medicine And Biology Society, vol 2011 (Boston, , Massachusetts USA, 2011), pp. 4633–4636

    Google Scholar 

  • P. Lotfi, K. Garde, A.K. Chouhan, E. Bengali, M.I. Romero-Ortega, Frontiers In Neuroengineering 4, 11–11 (2011)

    Article  Google Scholar 

  • G. Lundborg, L.B. Dahlin, N. Danielsen, R.H. Gelberman, F.M. Longo, H.C. Powell, and S. Varon, Experimental Neurology 76, 361–375 (1982a)

  • G. Lundborg, F.M. Longo, S. Varon, Brain Research 232, 157–161 (1982b)

    Article  Google Scholar 

  • S. Madduri, B. Gander, Journal of Controlled Release 161, 274–282 (2012)

    Article  Google Scholar 

  • R.K. Malcolm, K.-L. Edwards, P. Kiser, J. Romano, and T.J. Smith, Antiviral research 88, 30–39 (2010)

  • F.M.J. Martens, and J.P.F.A. Heesakkers, Advances in Urology 2011, 1–7 (2011)

  • M. Noda, M. Ochi, Y. Ikuta, A. Awaya, General Pharmacology: The Vascular System 31, 821–824 (1998)

    Article  Google Scholar 

  • A. Pabari, S.Y. Yang, A.M. Seifalian, A. Mosahebi, Journal of Plastic, Reconstructive & Aesthetic Surgery 63, 1941–1948 (2010)

    Article  Google Scholar 

  • K.M. Rich, T.D. Alexander, J.C. Pryor, J.P. Hollowell, Experimental Neurology 105, 162–170 (1989)

    Article  Google Scholar 

  • A. Sebille, C. Becker, Experimental Neurology 99, 765–767 (1988)

    Article  Google Scholar 

  • S.K. Sia, G.M. Whitesides, Electrophoresis 24, 13 (2003)

    Article  Google Scholar 

  • A. Srinivasan, L. Guo, R. Bellamkonda, In 5th International IEEE/EMBS Conference on Neural Engineering, 253–256 (2011)

  • S. Stokols, J. Sakamoto, C. Breckon, T. Holt, J. Weiss, M.H. Tuszynski, Tissue Engineering 12, 2777–2787 (2006)

    Article  Google Scholar 

  • T. Stöver, T. Lenarz, GMS current topics in otorhinolaryngology. Head & Neck Surgery 8, 1–22 (2009)

    Google Scholar 

  • H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, H. Uehata, Circulation 102, 399–404 (2000)

    Article  Google Scholar 

  • A. Tan, J. Rajadas, A.M. Seifalian, Journal of Controlled Release 163, 342–352 (2012)

    Article  Google Scholar 

  • K.E. Tansey, J.L. Seifert, B. Botterman, M.R. Delgado, M.I. Romero, Annals of Biomedical Engineering 39, 1815–1828 (2011)

    Article  Google Scholar 

  • H. Tsuji, M. Izukawa, R. Ikeguchi, R. Kakinoki, H. Sato, Y. Gotoh, and J. Ishikawa, Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms 206, 507–511 (2003)

  • D.J. Tyler, D.M. Durand, IEEE Transactions on Neural Systems and Rehabilitation Engineering 10, 294–303 (2002)

    Article  Google Scholar 

  • A. Vats, N.S. Tolley, J.M. Polak, J.E. Gough, Clinical Otolaryngology and Allied Sciences 28, 165–172 (2002)

    Article  Google Scholar 

  • S. Wang, Q. Cai, J. Hou, J. Bei, T. Zhang, J. Yang, Y. Wan, Journal of Biomedical Materials Research 66, 522–531 (2003)

    Article  Google Scholar 

  • S. Yoshii, M. Oka, M. Shima, A. Taniguchi, M. Akagi, Brain Research 949, 202–208 (2002)

    Article  Google Scholar 

  • J. Zhou, A. Ellis, N. Voelcker, Electrophoresis 31, 14 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoonsu Choi.

Electronic supplementary material

ESM 1

(M4V 1264 kb)

ESM 2

(M4V 433 kb)

ESM 3

(M4V 1272 kb)

ESM 4

(M4V 704 kb)

ESM 5

(M4V 792 kb)

ESM 6

(M4V 540 kb)

ESM 7

(M4V 728 kb)

ESM 8

(M4V 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, R., Kim, B., Pankratz, R. et al. Handcrafted multilayer PDMS microchannel scaffolds for peripheral nerve regeneration. Biomed Microdevices 17, 109 (2015). https://doi.org/10.1007/s10544-015-0012-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-0012-4

Keywords

Navigation