Skip to main content
Log in

Balancing oxygen diffusion and convection in spiral microfluidics to mimic radial biological gradients

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Biological gradients are more than linear, one-dimensional phenomena—they often manifest radial geometries superimposed over tissue features and in turn, elicit a spatial response. In wound healing, injury to tissue produces a hypoxic gradient towards the center of the wound, and wound cells respond to this by secreting growth hormones to promote healing. Despite this spatial element in tissue hypoxia, most in vitro hypoxia techniques rely on linear, diffusion-based gradients of limited dimensions. To demonstrate a large area, radial hypoxia gradient, a concentric spiral microfluidics was devised to balance oxygen diffusion against nitrogen convection. The devices were fabricated using only a simple robotic cutter and soft lithography. With these spirals, spatial gradients of 3–15 % oxygen were delivered to fibroblast cells seeded across a gas-permeable membrane to modulate VEGF secretions. This technique opens the door for more studies on hypoxic gradients in wound healing and a number of tissue oxygen applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • J.W. Allen, S.N. Bhatia, Biotechnol Bioeng 82(3), 253–262 (2003)

    Article  Google Scholar 

  • P.O. Carlsson, P. Liss, A. Andersson, L. Jansson, Diabetes 47(7), 1027–1032 (1998)

    Article  Google Scholar 

  • D.J. Ceradini, G.C. Gurtner, Trends Cardiovasc Med 15, 57–63 (2005)

    Article  Google Scholar 

  • Y. Chen, A.D. King, H. Shih, C. Peng, C. Wu, W. Liao, Y. Tung, Lab Chip 11, 3626–3633 (2011)

    Article  Google Scholar 

  • S. Chung, R. Sudo, P.J. Mack, C.R. Wan, V. Vickerman, R. Kamm, Lab Chip 9, 269–275 (2009)

    Article  Google Scholar 

  • P. Galambos, F.K. Forster, Micro Total Anal. Syst. 189–192 (1998)

  • H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima, C. Betsholtz, J Cell Biol 161(6), 1163–1177 (2003)

    Article  Google Scholar 

  • G. Gordillo, S. Roy, S. Khanna, R. Schlanger, S. Khandelwal, G. Phillips, C.K. Sen, Clin Exp Pharmacol Physiol 35, 957–964 (2008)

    Article  Google Scholar 

  • C.L.E. Helm, M.E. Fleury, A.H. Zisch, F. Boschetti, M.A. Swartz, Proc Natl Acad Sci U S A 102(44), 15779–15794 (2009)

    Article  Google Scholar 

  • G. Helmlinger, F. Yuan, M. Dellian, R.K. Jain, Nat Med 3, 177–182 (1997)

    Article  Google Scholar 

  • S.H. Huang, K.-S. Huang, C.-H. Yu, H.-Y. Gong, Biomicrofluidics 7(6), 064107 (2013)

    Article  Google Scholar 

  • S.-K. Jung, W. Gorski, C.A. Aspinwal, L.M. Kauri, R.T. Kennedy, Anal Chem 71, 3642–3649 (1999)

    Article  Google Scholar 

  • D.R. Knighton, T.K. Hunt, H. Scheuenstuhl, B.J. Halliday, Z. Werb, M.J. Banda, Science 221(4617), 1283–1285 (1983)

    Article  Google Scholar 

  • R.H.W. Lam, M.C. Kim, T. Thorsen, Anal Chem 81, 5918–5924 (2009)

    Article  Google Scholar 

  • J.F. Lo, M. Brennan, Z. Merchant, L. Chen, S. Guo, D.T. Eddington, L.A. DiPietro, Wound Repair Regen 21, 226–234 (2013)

    Article  Google Scholar 

  • J.F. Lo, E. Sinkala, D.T. Eddington, Lab Chip 10, 2394–2401 (2010)

    Article  Google Scholar 

  • J.F. Lo, Y. Wang, A. Blake, G. Yu, T.A. Harvat, H. Jeon, J. Oberholzer, D.T. Eddington, Anal Chem 84(4), 1987–1993 (2012)

    Article  Google Scholar 

  • E.M. Lucchetta, J.H. Lee, L.A. Fu, N.H. Patel, R.F. Ismagilov, Lett Nat 434(28), 1134–1137 (2005)

    Article  Google Scholar 

  • G. Mehta, K. Mehta, D. Sud, J.W. Song, T. Bersano-Begey, N. Futai, Y.S. Heo, M. Mycek, J.J. Linderman, S. Takayama, Biomed Microdevices 9(2), 123–134 (2007)

    Article  Google Scholar 

  • M. Moore, R. Moore, P.S. McFetridge, Tissue Eng Part A 19(17–18), 2005–2013 (2013)

    Article  Google Scholar 

  • N.N. Nissen, P.J. Polverini, A.E. Koch, M.V. Volin, R.L. Gamelli, L.A. DiPietro, Am J Pathol 152(6), 1445–1452 (1998)

    Google Scholar 

  • S.C. Oppegard, K.H. Nam, J.R. Carr, S.C. Skaalure, D.T. Eddington, PLoS One 4(9), e6891 (2009)

    Article  Google Scholar 

  • E.A. O’Toole, M.P. Marinkovich, C.L. Peavey, M.R. Amieva, H. Furthmayr, T.A. Mustoe, D.T. Woodley, J. Clin, J Clin Investig 100(11), 2881–2891 (1997)

    Article  Google Scholar 

  • J. Park, T. Bansal, M. Pinelis, M.M. Maharbiz, Lab Chip 6, 611–622 (2006)

    Article  Google Scholar 

  • M. Polinkovsky, E. Gutierrez, A. Levchenko, A. Groisman, Lab Chip 9, 1073–1084 (2009)

    Article  Google Scholar 

  • J. Pouysségur, F. Dayan, N.M. Mazure, Nat Insights 441, 437–443 (2006)

    Google Scholar 

  • C.W. Pugh, P.J. Ratcliffe, Nat Med 9, 677–684 (2003)

    Article  Google Scholar 

  • S. Rousseau, F. Houle, J. Huot, Trends Cardiovasc Med 10(8), 321–327 (2000)

    Article  Google Scholar 

  • C.K. Sen, Wound Repair Regen 17(1), 1–18 (2009)

    Article  Google Scholar 

  • D.T. Shima, A.P. Adamis, N. Ferrara, K.T. Yeo, T.K. Yeo, R. Allende, J. Folkman, P.A. D’Amore, Mol Med 1(2), 182–193 (1995)

    Google Scholar 

  • Y. Shin, J.S. Jeon, S. Han, G.S. Jung, S. Shin, S.H. Lee, R. Sudo, R.D. Kamm, S. Chung, Lab Chip 11, 2175–2181 (2011)

    Article  Google Scholar 

  • R. Shreeniwas, S. Koga, M. Karakurum, D. Pinsky, E. Kaiser, J. Brett, B.A. Wolitzky, C. Norton, J. Plocinski, W. Benjamin, J. Clin, J Clin Invest 90(6), 2333–2339 (1992)

    Article  Google Scholar 

  • G.P. van Nieuw Amerongen, P. Koolwijk, A. Versteilen, V.W.M. van Hinsbergh, Arteriosclerosis. Thromb Vasc Biol 23, 211–217 (2003)

    Article  Google Scholar 

  • A.P. Vollmer, R.F. Probstein, R. Gilbert, T. Thorsen, Lab Chip 5, 1059–1066 (2005)

    Article  Google Scholar 

  • J.R. Welty, C.E. Wicks, R.E. Wilson, Fundamentals of momentum, heat, and mass transfer, 3rd edn. (Wiley, New York, 1984), p. 803

    Google Scholar 

  • Y. Xia, Y. Zhao, J.W. Tyrone, A. Chen, T.A. Mustoe, J Investig Dermatol 116, 50–56 (2001)

    Article  Google Scholar 

  • Y. Zheng, J. Chen, M. Craven, N.W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J.A. López, A.D. Stroock, Proc Natl Acad Sci U S A 109(24), 9342–9347 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Michigan Dearborn Faculty Startup Fund, SEED Fund, and Graduate Student Research Fund. We thank Dr. Gargi Ghosh for donating fibroblast cells used in this study. We thank Dr. Nilay Chakraborty’s help on the oxygen transport.

Conflict of interest disclosure

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe F. Lo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 32 kb)

ESM 2

(PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Hu, D., Zhao, Z. et al. Balancing oxygen diffusion and convection in spiral microfluidics to mimic radial biological gradients. Biomed Microdevices 17, 14 (2015). https://doi.org/10.1007/s10544-014-9922-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-014-9922-9

Keywords

Navigation