Abstract
This work presents a fast, simple, and cost-effective technique for fabricating and integrating highly conductive 3D microelectrodes into microfluidic devices. The 3D electrodes are made of low cost, commercially available conductive adhesive and carbon powder. The device can be fabricated by a single-step soft lithography and controllable injections of a conductive composite into microchannels. Functioning of the microfluidic device with 3D electrodes was demonstrated through DEP particle switching as an example for a wide range of microfluidic applications.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
H.E. Ayliffe, A. Bruno Frazier, R.D. Rabbitt, Electric impedance spectroscopy using microchannels with integrated metal electrodes. J. Microelectromech. Syst. 8(1), 50–57 (1999). doi:10.1109/84.749402
P. Benhal, J.G. Chase, P. Gaynor, B. Oback, W. Wang, AC electric field induced dipole-based on-chip 3D cell rotation. Lab Chip (2014). doi:10.1039/C4LC00312H
A. Blau, A. Murr, S. Wolff, E. Sernagor, P. Medini, G. Iurilli, C. Ziegler, F. Benfenati, Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32(7), 1778–1786 (2011). doi:10.1016/j.biomaterials.2010.11.014
Y. Choongho, J. Vykoukal, D.M. Vykoukal, J.A. Schwartz, S. Li, P.R.C. Gascoyne, A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications. J. Microelectromech. Syst. 14(3), 480–487 (2005). doi:10.1109/JMEMS.2005.844839
A.L. Deman, M. Brun, M. Quatresous, J.F. Chateaux, M. Frenea-Robin, N. Haddour, V. Semet, R. Ferrigno, Characterization of C-PDMS electrodes for electrokinetic applications in microfluidic systems. J. Micromech. Microeng. 21(9), 095013 (2011)
M.B. Fox, D.C. Esveld, A. Valero, R. Luttge, H.C. Mastwijk, P.V. Bartels, A. Van Den Berg, R.M. Boom, Electroporation of cells in microfluidic devices: a review. Anal. Bioanal. Chem. 385(3), 474–485 (2006). doi:10.1007/s00216-006-0327-3
S. Gawad, L. Schild, P. Renaud, Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1(1), 76–82 (2001). doi:10.1039/B103933B
N. Hallfors, A. Khan, M.D. Dickey, A.M. Taylor, Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab Chip 13(4), 522–526 (2013). doi:10.1039/C2LC40954B
S.-I. Han, Y.-D. Joo, K.-H. Han, An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation. Analyst 138(5), 1529–1537 (2013). doi:10.1039/C3AN36261B
C. Han-Sheng, T.W. Steven, Rapid patterning of slurry-like elastomer composites using a laser-cut tape. J. Micromech. Microeng. 19(9), 097001 (2009)
N. Hu, J. Yang, Z.-Q. Yin, Y. Ai, S. Qian, I.B. Svir, B. Xia, J.-W. Yan, W.-S. Hou, X.-L. Zheng, A high-throughput dielectrophoresis-based cell electrofusion microfluidic device. Electrophoresis 32(18), 2488–2495 (2011). doi:10.1002/elps.201100082
M.C. Jaramillo, E. Torrents, R. Martínez-Duarte, M.J. Madou, A. Juárez, On-line separation of bacterial cells by carbon-electrode dielectrophoresis. Electrophoresis 31(17), 2921–2928 (2010). doi:10.1002/elps.201000082
Y. Kang, B. Cetin, Z. Wu, D. Li, Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim. Acta 54(6), 1715–1720 (2009). doi:10.1016/j.electacta.2008.09.062
A. Khosla, B.L. Gray, Micropatternable multifunctional nanocomposite polymers for flexible soft NEMS and MEMS applications. ECS Trans. 45(3), 477–494 (2012)
N. Lewpiriyawong, K. Kandaswamy, C. Yang, V. Ivanov, R. Stocker, Microfluidic characterization and continuous separation of cells and particles using conducting Poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis. Anal. Chem. 83(24), 9579–9585 (2011). doi:10.1021/ac202137y
N. Lewpiriyawong, C. Yang, Y.C. Lam, Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31(15), 2622–2631 (2010). doi:10.1002/elps.201000087
H. Li, C.X. Luo, H. Ji, Q. Ouyang, Y. Chen, Micro-pressure sensor made of conductive PDMS for microfluidic applications. Microelectron. Eng. 87(5–8), 1266–1269 (2010). doi:10.1016/j.mee.2009.11.005
M. Li, W.H. Li, J. Zhang, G. Alici, W. Wen, A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation. J. Phys. D. Appl. Phys. 47(6), 063001 (2014)
S. Li, M. Li, Y. Hui, W. Cao, W. Li, W. Wen, A novel method to construct 3D electrodes at the sidewall of microfluidic channel. Microfluid. Nanofluid. 14(3–4), 499–508 (2013). doi:10.1007/s10404-012-1068-6
K.-Y. Lu, A.M. Wo, Y.-J. Lo, K.-C. Chen, C.-M. Lin, C.-R. Yang, Three dimensional electrode array for cell lysis via electroporation. Biosens. Bioelectron. 22(4), 568–574 (2006). doi:10.1016/j.bios.2006.08.009
R. Martinez-Duarte, R.A. Gorkin Iii, K. Abi-Samra, M.J. Madou, The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10(8), 1030–1043 (2010). doi:10.1039/B925456K
B. Mustin, B. Stoeber, Low cost integration of 3D-electrode structures into microfluidic devices by replica molding. Lab Chip 12(22), 4702–4708 (2012). doi:10.1039/C2LC40728K
J. Park, B. Kim, S.K. Choi, S. Hong, S.H. Lee, K.-I. Lee, An efficient cell separation system using 3D-asymmetric microelectrodes. Lab Chip 5(11), 1264–1270 (2005). doi:10.1039/B506803G
A. Pavesi, F. Piraino, G.B. Fiore, K.M. Farino, M. Moretti, M. Rasponi, How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab Chip 11(9), 1593–1595 (2011). doi:10.1039/C1LC20084D
J.-H. So, M.D. Dickey, Inherently aligned microfluidic electrodes composed of liquid metal. Lab Chip 11(5), 905–911 (2011). doi:10.1039/C0LC00501K
G. Tresset, S. Takeuchi, A microfluidic device for electrofusion of biological vesicles. Biomed. Microdevices 6(3), 213–218 (2004). doi:10.1023/B:BMMD.0000042050.95246.af
J. Voldman, M.L. Gray, M. Toner, M.A. Schmidt, A microfabrication-based dynamic array cytometer. Anal. Chem. 74(16), 3984–3990 (2002). doi:10.1021/ac0256235
L. Wang, L.A. Flanagan, N.L. Jeon, E. Monuki, A.P. Lee, Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip 7(9), 1114–1120 (2007). doi:10.1039/B705386J
N. Watkins, B.M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, A robust electrical microcytometer with 3-dimensional hydrofocusing. Lab Chip 9(22), 3177–3184 (2009). doi:10.1039/B912214A
X. Xuan, J. Zhu, C. Church, Particle focusing in microfluidic devices. Microfluid. Nanofluid. 9(1), 1–16 (2010). doi:10.1007/s10404-010-0602-7
Acknowledgment
This work was supported by SUTD-MIT International Design Center (IDG11300101) and TL@SUTD Seed Grant (IGDS S14 02011) awarded to Y.A.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(AVI 6610 kb)
Rights and permissions
About this article
Cite this article
Puttaswamy, S.V., Xue, P., Kang, Y. et al. Simple and low cost integration of highly conductive three-dimensional electrodes in microfluidic devices. Biomed Microdevices 17, 4 (2015). https://doi.org/10.1007/s10544-014-9913-x
Published:
DOI: https://doi.org/10.1007/s10544-014-9913-x