Skip to main content
Log in

Simple and low cost integration of highly conductive three-dimensional electrodes in microfluidic devices

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This work presents a fast, simple, and cost-effective technique for fabricating and integrating highly conductive 3D microelectrodes into microfluidic devices. The 3D electrodes are made of low cost, commercially available conductive adhesive and carbon powder. The device can be fabricated by a single-step soft lithography and controllable injections of a conductive composite into microchannels. Functioning of the microfluidic device with 3D electrodes was demonstrated through DEP particle switching as an example for a wide range of microfluidic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • H.E. Ayliffe, A. Bruno Frazier, R.D. Rabbitt, Electric impedance spectroscopy using microchannels with integrated metal electrodes. J. Microelectromech. Syst. 8(1), 50–57 (1999). doi:10.1109/84.749402

    Article  Google Scholar 

  • P. Benhal, J.G. Chase, P. Gaynor, B. Oback, W. Wang, AC electric field induced dipole-based on-chip 3D cell rotation. Lab Chip (2014). doi:10.1039/C4LC00312H

    Google Scholar 

  • A. Blau, A. Murr, S. Wolff, E. Sernagor, P. Medini, G. Iurilli, C. Ziegler, F. Benfenati, Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32(7), 1778–1786 (2011). doi:10.1016/j.biomaterials.2010.11.014

    Article  Google Scholar 

  • Y. Choongho, J. Vykoukal, D.M. Vykoukal, J.A. Schwartz, S. Li, P.R.C. Gascoyne, A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications. J. Microelectromech. Syst. 14(3), 480–487 (2005). doi:10.1109/JMEMS.2005.844839

    Article  Google Scholar 

  • A.L. Deman, M. Brun, M. Quatresous, J.F. Chateaux, M. Frenea-Robin, N. Haddour, V. Semet, R. Ferrigno, Characterization of C-PDMS electrodes for electrokinetic applications in microfluidic systems. J. Micromech. Microeng. 21(9), 095013 (2011)

    Article  Google Scholar 

  • M.B. Fox, D.C. Esveld, A. Valero, R. Luttge, H.C. Mastwijk, P.V. Bartels, A. Van Den Berg, R.M. Boom, Electroporation of cells in microfluidic devices: a review. Anal. Bioanal. Chem. 385(3), 474–485 (2006). doi:10.1007/s00216-006-0327-3

    Article  Google Scholar 

  • S. Gawad, L. Schild, P. Renaud, Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1(1), 76–82 (2001). doi:10.1039/B103933B

    Article  Google Scholar 

  • N. Hallfors, A. Khan, M.D. Dickey, A.M. Taylor, Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab Chip 13(4), 522–526 (2013). doi:10.1039/C2LC40954B

    Article  Google Scholar 

  • S.-I. Han, Y.-D. Joo, K.-H. Han, An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation. Analyst 138(5), 1529–1537 (2013). doi:10.1039/C3AN36261B

    Article  Google Scholar 

  • C. Han-Sheng, T.W. Steven, Rapid patterning of slurry-like elastomer composites using a laser-cut tape. J. Micromech. Microeng. 19(9), 097001 (2009)

    Article  Google Scholar 

  • N. Hu, J. Yang, Z.-Q. Yin, Y. Ai, S. Qian, I.B. Svir, B. Xia, J.-W. Yan, W.-S. Hou, X.-L. Zheng, A high-throughput dielectrophoresis-based cell electrofusion microfluidic device. Electrophoresis 32(18), 2488–2495 (2011). doi:10.1002/elps.201100082

    Article  Google Scholar 

  • M.C. Jaramillo, E. Torrents, R. Martínez-Duarte, M.J. Madou, A. Juárez, On-line separation of bacterial cells by carbon-electrode dielectrophoresis. Electrophoresis 31(17), 2921–2928 (2010). doi:10.1002/elps.201000082

    Article  Google Scholar 

  • Y. Kang, B. Cetin, Z. Wu, D. Li, Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim. Acta 54(6), 1715–1720 (2009). doi:10.1016/j.electacta.2008.09.062

    Article  Google Scholar 

  • A. Khosla, B.L. Gray, Micropatternable multifunctional nanocomposite polymers for flexible soft NEMS and MEMS applications. ECS Trans. 45(3), 477–494 (2012)

    Article  Google Scholar 

  • N. Lewpiriyawong, K. Kandaswamy, C. Yang, V. Ivanov, R. Stocker, Microfluidic characterization and continuous separation of cells and particles using conducting Poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis. Anal. Chem. 83(24), 9579–9585 (2011). doi:10.1021/ac202137y

    Article  Google Scholar 

  • N. Lewpiriyawong, C. Yang, Y.C. Lam, Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31(15), 2622–2631 (2010). doi:10.1002/elps.201000087

    Article  Google Scholar 

  • H. Li, C.X. Luo, H. Ji, Q. Ouyang, Y. Chen, Micro-pressure sensor made of conductive PDMS for microfluidic applications. Microelectron. Eng. 87(5–8), 1266–1269 (2010). doi:10.1016/j.mee.2009.11.005

    Article  Google Scholar 

  • M. Li, W.H. Li, J. Zhang, G. Alici, W. Wen, A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation. J. Phys. D. Appl. Phys. 47(6), 063001 (2014)

    Article  Google Scholar 

  • S. Li, M. Li, Y. Hui, W. Cao, W. Li, W. Wen, A novel method to construct 3D electrodes at the sidewall of microfluidic channel. Microfluid. Nanofluid. 14(3–4), 499–508 (2013). doi:10.1007/s10404-012-1068-6

    Article  Google Scholar 

  • K.-Y. Lu, A.M. Wo, Y.-J. Lo, K.-C. Chen, C.-M. Lin, C.-R. Yang, Three dimensional electrode array for cell lysis via electroporation. Biosens. Bioelectron. 22(4), 568–574 (2006). doi:10.1016/j.bios.2006.08.009

    Article  Google Scholar 

  • R. Martinez-Duarte, R.A. Gorkin Iii, K. Abi-Samra, M.J. Madou, The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10(8), 1030–1043 (2010). doi:10.1039/B925456K

    Article  Google Scholar 

  • B. Mustin, B. Stoeber, Low cost integration of 3D-electrode structures into microfluidic devices by replica molding. Lab Chip 12(22), 4702–4708 (2012). doi:10.1039/C2LC40728K

    Article  Google Scholar 

  • J. Park, B. Kim, S.K. Choi, S. Hong, S.H. Lee, K.-I. Lee, An efficient cell separation system using 3D-asymmetric microelectrodes. Lab Chip 5(11), 1264–1270 (2005). doi:10.1039/B506803G

    Article  Google Scholar 

  • A. Pavesi, F. Piraino, G.B. Fiore, K.M. Farino, M. Moretti, M. Rasponi, How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab Chip 11(9), 1593–1595 (2011). doi:10.1039/C1LC20084D

    Article  Google Scholar 

  • J.-H. So, M.D. Dickey, Inherently aligned microfluidic electrodes composed of liquid metal. Lab Chip 11(5), 905–911 (2011). doi:10.1039/C0LC00501K

    Article  Google Scholar 

  • G. Tresset, S. Takeuchi, A microfluidic device for electrofusion of biological vesicles. Biomed. Microdevices 6(3), 213–218 (2004). doi:10.1023/B:BMMD.0000042050.95246.af

    Article  Google Scholar 

  • J. Voldman, M.L. Gray, M. Toner, M.A. Schmidt, A microfabrication-based dynamic array cytometer. Anal. Chem. 74(16), 3984–3990 (2002). doi:10.1021/ac0256235

    Article  Google Scholar 

  • L. Wang, L.A. Flanagan, N.L. Jeon, E. Monuki, A.P. Lee, Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip 7(9), 1114–1120 (2007). doi:10.1039/B705386J

    Article  Google Scholar 

  • N. Watkins, B.M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, A robust electrical microcytometer with 3-dimensional hydrofocusing. Lab Chip 9(22), 3177–3184 (2009). doi:10.1039/B912214A

    Article  Google Scholar 

  • X. Xuan, J. Zhu, C. Church, Particle focusing in microfluidic devices. Microfluid. Nanofluid. 9(1), 1–16 (2010). doi:10.1007/s10404-010-0602-7

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by SUTD-MIT International Design Center (IDG11300101) and TL@SUTD Seed Grant (IGDS S14 02011) awarded to Y.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(AVI 6610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puttaswamy, S.V., Xue, P., Kang, Y. et al. Simple and low cost integration of highly conductive three-dimensional electrodes in microfluidic devices. Biomed Microdevices 17, 4 (2015). https://doi.org/10.1007/s10544-014-9913-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-014-9913-x

Keywords

Navigation